CIESC Journal ›› 2017, Vol. 68 ›› Issue (11): 4414-4422.DOI: 10.11949/j.issn.0438-1157.20170308
Previous Articles Next Articles
TENG Xuegang, YANG Renchun, REN Chao, LIU Lulu, WANG Mingxing
Received:
2017-03-28
Revised:
2017-07-19
Online:
2017-11-05
Published:
2017-11-05
Supported by:
supported by the National Natural Science Foundation of China (51572004), the Natural Science Foundation of the Higher Education Institutions of Anhui Province (KJ2016SD06), the Natural Science Fund for Distinguished Young Scholars from Anhui Polytechnic University (2016JQ01) and the Top-notch Talent Cultivation Plan from Anhui Polytechnic University (2016BJRC002).
滕雪刚, 杨仁春, 任超, 刘璐璐, 汪明星
通讯作者:
杨仁春
基金资助:
国家自然科学基金项目(51572004);安徽省高校自然科学基金重大项目(KJ2016SD06);安徽工程大学校级杰出青年科学基金项目(2016JQ01);安徽工程大学2016年中青年拔尖人才培养计划项目(2016BJRC002)。
CLC Number:
TENG Xuegang, YANG Renchun, REN Chao, LIU Lulu, WANG Mingxing. Preparation of C/TiO2-SO42- and their water splitting performance[J]. CIESC Journal, 2017, 68(11): 4414-4422.
滕雪刚, 杨仁春, 任超, 刘璐璐, 汪明星. C/TiO2-SO42-的制备及其光解水性能[J]. 化工学报, 2017, 68(11): 4414-4422.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170308
[1] | 申玉芳, 龙飞, 邹正光. 半导体光催化技术研究进展[J]. 材料导报, 2006, 20(6):28-31. SHEN Y F, LONG F, ZOU Z G. Developments of photocatalytic semiconductors[J]. Mater. Rev., 2006, 20(6):28-31. |
[2] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37:38-245. |
[3] | DEMIRCI S, DIKICI T, YURDDASKAL M, et al. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances[J]. Appl. Surf. Sci., 2016, 390:591-601. |
[4] | BANERJEE A N, HAMNABARD N, SANG W J. A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol-gel derived anatase TiO2 nanoparticles[J]. Ceram. Int., 2016, 42:12010-12026. |
[5] | LI D, CHEN F, JIANG D L, et al. Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets[J]. Appl. Surf. Sci., 2016, 390:689-695. |
[6] | LIN Y H, CHANG C W, CHU H, et al. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2:characterization, kinetics, and reaction pathways[J]. Appl. Catal. B:Environ., 2016, 199:1-10. |
[7] | WANG Y Z, WU Y S, YANG H, et al. Doping TiO2 with boron or/and cerium elements:effects on photocatalytic antimicrobial activity[J]. Vacuum, 2016, 131:58-64. |
[8] | CHENG Z W, GU Z Q, CHEN J M. Synthesis, characterization, and photocatalytic activity of porous La-N-co-doped TiO2 nanotubes for gaseous chlorobenzene oxidation[J]. J. Environ. Sci.-China, 2016, 46:203-213. |
[9] | DU C, ZHOU J S, LI F Z, et al. Extremely fast dark adsorption rate of carbon and nitrogen co-doped TiO2 prepared by a relatively fast, facile and low-cost microwave method[J]. Appl. Phys. A, 2016, 122:714. |
[10] | MOYA A, CHEREVAN A, MARCHESAN S, et al. Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2, hybrids[J]. Appl. Catal. B:Environ., 2015, 179:574-582. |
[11] | TIAN J, LENG Y H, ZHAO Z H, et al. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Nano Energy, 2015, 11:419-427. |
[12] | YU X J, LIU J J, YU Y C, et al. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites[J]. Carbon, 2014, 68:718-724. |
[13] | FUJITA SI, KAWAMORI H, HONDA D, et al. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts:effects of preparation and reaction conditions[J]. Appl. Catal. B:Environ., 2016, 181:818-824. |
[14] | NIU W, WANG G, LIU X D, et al. Preparation of WO3-TiO2 photo-anode and its performance of photocatalytic hydrogen production by water splitting[J]. Int. J. Electrochem. Sc., 2015, 10:8513-8521. |
[15] | TANIGAWA S, IRIE H. Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide[J]. Appl. Catal. B:Environ., 2016, 180:1-5. |
[16] | LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chem. Soc. Rev., 2015, 44:362. |
[17] | PIZEM H, SUKENIKC N, SAMPATHKUMARAN U, et al. Effects of substrate surface functionality on solution-deposited titania films[J]. Chem. Mater., 2002, 14:2476-2485. |
[18] | 沈俊, 罗妮, 张明俊, 等. 介孔TiO2-SO42-的合成及表征[J]. 催化学报, 2007, 28(3):264-268. SHEN J, LUO N, ZHANG M J, et al. Synthesis and characterization of mesoporous TiO2-SO42-[J]. Chinese J. Catal., 2007, 28(3):264-268. |
[19] | 唐守强, 何菁萍. 介孔SO42-/TiO2粉体的制备及光催化性能的研究[J]. 硅酸盐通报, 2011, 30(6):1404-1409. TANG S Q, HE J P. Study on preparation and photocatalytic capability of mesoporous SO42-/TiO2[J]. Bull. Chinese Ceram. Soc., 2011, 30(6):1404-1409. |
[20] | 苏文悦, 付贤智. 光催化剂SO42-/TiO2和TiO2的光谱行为比较[J]. 光谱学与光谱分析, 2000, 20(5):655-657. SU W Y, FU X Z. Comparison of spectral behavior of SO42-/TiO2 and TiO2 photocatalyst[J]. Spectrosc. Spect. Anal., 2000, 20(5):655-657. |
[21] | 彭少洪, 张渊明, 钟理. TiO2基固体超强酸的制备及光催化性能研究[J]. 无机化学学报, 2006, 34(12):2258-2262. PENG S H, ZHANG Y M, ZHONG L. Preparation of TiO2-based solid superacid and its photocatalytic performance[J]. J. Inorg. Mater., 2006, 34(12):2258-2262. |
[22] | YUAN H, HE J, LI R, et al. Characterization of SO42-/TiO2 and its catalytic activity in the epoxidation reaction[J]. Res. Chem. Intermed., 2017, 43:4353-4368. |
[23] | MENG C, CAO G P, LI X K, et al. Structure of the SO42-/TiO2 solid acid catalyst and its catalytic activity in cellulose acetylation[J]. Reac. Kinet. Mech. Cat., 2017, 121:719-734. |
[24] | VELMURUGAN R, KRISHNAKUMAR B, SWAMINATHAN M. Synthesis of Pd co-doped nano-TiO2-SO42-, and its synergetic effect on the solar photodegradation of Reactive Red 120 dye[J]. Mat. Sci. Semicon. Proc., 2014, 25(25):163-172. |
[25] | FERNANDO K A, SAHU S, LIU Y, et al. Carbon quantum dots and applications in photocatalytic energy conversion.[J]. ACS Appl. Mater. Inter., 2015, 7(16):8363. |
[26] | ZALFANI M, SCHUEREN B V D, MAHDOUANI M, et al. ZnO quantum dots decorated 3DOM TiO2, nanocomposites:symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants[J]. Appl. Catal. B:Environ., 2016, 199:187-198. |
[27] | WANG X W, SUN G Z, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chem. Soc. Rev., 2016, 47(22):2239. |
[28] | CHEN T, QUAN W, YU L, et al. One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts[J]. J. Alloy. Compd., 2016, 686:628-634. |
[29] | GUTIÉRREZ O Y, PÉREZ F, FUENTES G A, et al. Deep HDS over NiMo/Zr-SBA-15 catalysts with varying MoO3 loading[J]. Cataly. Today, 2008, 130(2/3/4):292-301. |
[30] | YANG R C, ZHANG Z H, REN Y M, et al. Green synthesis of bi-component copper oxide composites and enhanced photocatalytic performance[J]. Mater. Sci. Tech-Lond., 2015, 31(1):25-30. |
[31] | HUANG M, YU J, HU Q, et al. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light[J]. Appl. Surf. Sci., 2016, 389:1084-1093. |
[32] | LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Appl. Surf. Sci., 2016, 390:368-376. |
[33] | HU J, WANG L, ZHANG P, et al. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production[J]. J. Power Sources, 2016, 328:28-36. |
[34] | LI G, LIAN Z, WANG W, et al. Nanotube-confinement induced size-controllable g-C3N4, quantum dots modified single-crystalline TiO2, nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19:446-454. |
[35] | JIN T, YAMAGUCHI T, TANABE K, et al. Infrared study of sulfur-containing iron oxide[J]. Inorg. Chem., 1984, 23:4396-4398. |
[36] | JIN T, YAMAGUCHI T, TANABE K, et al. Structure of acid sites on sulfur-promoted iron oxide[J]. J. Phys. Chem., 1986, 90(14):31448-3152. |
[37] | IUPAC. Manual of symbols and terminology[J]. Pure Appl. Chem., 1972, 31:578-638. |
[38] | YANG R C, LU X J, ZHANG H, et al. Glycol-assisted construction of three-dimensionally ordered macroporous ZnO-Cu2O-TiO2 with enhanced photocatalytic properties[J]. Appl. Surf. Sci., 2016, 36:237-243. |
[39] | LI Y, HWANG D S, LEE N H, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett., 2005, 404(1/2/3):25-29. |
[40] | REN W, AI Z, JIA F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Appl. Catal. B:Environ., 2007, 69(3):138-144. |
[41] | GUAYAQUIL-SOSA J F, SERRANO-ROSALES B, et al. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt[J]. Appl. Catal. B:Environ., 2017, 211:337-348.):655-657. |
[21] | 彭少洪, 张渊明, 钟理. TiO2 基固体超强酸的制备及光催化性能研究[J]. 无机化学学报, 2006, 34(12):2258-2262. PENG S H, ZHANG Y M, ZHONG L. Preparation of TiO2-based solid superacid and its photocatalytic performance[J]. J. Inorg. Mater., 2006, 34(12):2258-2262. |
[22] | YUAN H, HE J, LI R, et al. Characterization of SO42-/TiO2 and its catalytic activity in the epoxidation reaction[J]. Res. Chem. Intermed., 2017, 43:4353-4368. |
[23] | MENG C, CAO G P, LI X K, et al. Structure of the SO42-/TiO2 solid acid catalyst and its catalytic activity in cellulose acetylation[J]. Reac. Kinet. Mech. Cat., 2017, 121:719-734. |
[24] | VELMURUGAN R, KRISHNAKUMAR B, SWAMINATHAN M. Synthesis of Pd co-doped nanoTiO2-SO42-, and its synergetic effect on the solar photodegradation of Reactive Red 120 dye[J]. Mat. Sci. Semicon. Proc., 2014, 25(25):163-172. |
[25] | FERNANDO K A, SAHU S, LIU Y, et al. Carbon quantum dots and applications in photocatalytic energy conversion.[J]. Acs Appl. Mater. Inter., 2015, 7(16):8363. |
[26] | ZALFANI M, SCHUEREN B V D, MAHDOUANI M, et al. ZnO quantum dots decorated 3DOM TiO2, nanocomposites:Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants[J]. Appl. Catal. B:Environ., 2016, 199:187-198. |
[27] | WANG X W, SUN G Z, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chem. Soc. Rev., 2016, 47(22):2239. |
[28] | CHEN T, QUAN W, YU L, et al. One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts[J]. J. Alloy. Compd., 2016, 686:628-634. |
[29] | Gutiérrez O Y, Pérez F, Fuentes G A, et al. Deep HDS over NiMo/Zr-SBA-15 catalysts with varying MoO3 loading[J]. Cataly. Today, 2008, 130(2-4):292-301. |
[30] | YANG R C, ZHANG Z H, REN Y M, et al. Green synthesis of bi-component copper oxide composites and enhanced photocatalytic performance[J]. Mater. Sci. Tech-Lond., 2015, 31(1):25-30. |
[31] | HUANG M, YU J, HU Q, et al. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light[J]. Appl. Surf. Sci., 2016, 389:1084-1093. |
[32] | LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Appl. Surf. Sci., 2016, 390:368-376. |
[33] | HU J, WANG L, ZHANG P, et al. Construction of solidstate Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production[J]. J. Power Sources, 2016, 328:28-36. |
[34] | LI G, LIAN Z, WANG W, et al. Nanotube-confinement induced size-controllable g-C3N4, quantum dots modified single-crystalline TiO2, nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19:446-454. |
[35] | JIN T, YAMAGUCHI T, TANABE K,et al. Infrared study of sulfur-containing iron oxide[J]. Inorg. Chem., 1984, 23:4396-4398. |
[36] | JIN T, YAMAGUCHI T, TANABE K, et al. Structure of acid sites on sulfur-promoted iron oxide[J]. J. Phys. Chem., 1986, 90(14):31448-3152. |
[37] | IUPAC manual of symbols and terminology[J]. Pure Appl. Chem., 1972, 31:578-638. |
[38] | YANG R C, LU X J, ZHANG H, et al. Glycol-assisted construction of three-dimensionally ordered macroporous ZnO-Cu2O-TiO2 with enhanced photocatalytic properties[J]. Appl. Surf. Sci., 2016, 36:237-243. |
[39] | LI Y, HWANG D S, LEE N H, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett., 2005, 404(1-3):25-29. |
[40] | REN W, AI Z, JIA F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Appl. Catal. B:Environ., 2007, 69(3):138-144. |
[41] | GUAYAQUIL-SOSA J F, SERRANO-ROSALES B, et al. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt[J]. Appl. Catal. B:Environ., 2017, 211:337-348. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[14] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[15] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||