CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 76-87.DOI: 10.11949/j.issn.0438-1157.20170883
Previous Articles Next Articles
JIANG Hao, CHEN Bingzhen
Received:
2017-07-10
Revised:
2017-09-06
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170883
蒋浩, 陈丙珍
通讯作者:
陈丙珍
CLC Number:
JIANG Hao, CHEN Bingzhen. Research progress of chemical process stability analysis[J]. CIESC Journal, 2018, 69(1): 76-87.
蒋浩, 陈丙珍. 化工过程稳定性分析研究进展[J]. 化工学报, 2018, 69(1): 76-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170883
[1] | BAYBUTT P. Layers of protection analysis for human factors (LOPA-HF)[J]. Process Safety Progress, 2002, 21(2):119-129. |
[2] | HENDERSHOT D C. An overview of inherently safer design[J]. Process Safety Progress, 2006, 25(2):98-107. |
[3] | 王杭州, 陈丙珍, 赵劲松, 等. 面向本质安全化的化工过程设计:多稳态及其稳定性分析[M]. 北京:清华大学出版社, 2017. WANG H Z, CHEN B Z, ZHAO J S, et al. Inherently Safer Design Oriented Analysis of Steady-State Multiplicity and Stability of Chemical Processes[M]. Beijing:Tsinghua University Press, 2017. |
[4] | WOLFF E A, SKOGESTAD S, PERKINS J. A procedure for operability analysis[C]//Institution of Chemical Engineers Symposium Series. 1994, 133:95-102. |
[5] | SEIDER W D, BRENGEL D D, WIDAGDO S. Nonlinear analysis in process design[J]. AIChE Journal, 1991, 37(1):1-38. |
[6] | 王杭州, 陈丙珍, 何小荣, 等. 化学反应系统的多稳态分析[J]. 化工学报, 2009, 60(1):127-133. WANG H Z, CHEN B Z, HE X R, et al. Analysis of steady state multiplicity of chemical reaction systems[J]. CIESC Journal, 2009, 60(1):127-133. |
[7] | KIVA V N, ALUKHANOVA B M. Multiple steady states of distillation and its realisation[J]. Computers & Chemical Engineering, 1997, 21:S541-S546. |
[8] | WANG C, WONG D, CHIEN I, et al. Experimental investigation of multiple steady states and parametric sensitivity in azeotropic distillation[J]. Computers & Chemical Engineering, 1997, 21:S535-S540. |
[9] | ELNASHAIE S S, GRACE J R. Complexity, bifurcation and chaos in natural and man-made lumped and distributed systems[J]. Chemical Engineering Science, 2007, 62(13):3295-3325. |
[10] | 李庆扬, 莫孜中, 祁力群. 非线性方程组的数值解法[M]. 北京:科学出版社, 1987. LI Q Y, MO Z Z, QI L Q. Numerical Methods for Nonlinear Systems of Equations[M]. Beijing:Science Press, 1987. |
[11] | WAYBURN T, SEADER J. Homotopy continuation methods for computer-aided process design[J]. Computers & Chemical Engineering, 1987, 11(1):7-25. |
[12] | GRITTON K S, SEADER J, LIN W J. Global homotopy continuation procedures for seeking all roots of a nonlinear equation[J]. Computers & Chemical Engineering, 2001, 25(7):1003-1019. |
[13] | JALALI F, SEADER J, KHALEGHI S. Global solution approaches in equilibrium and stability analysis using homotopy continuation in the complex domain[J]. Computers & Chemical Engineering, 2008, 32(10):2333-2345. |
[14] | 陈传淼, 谢资清. 非线性微分方程多解计算的搜索延拓法[M]. 北京:科学出版社, 2005. CHEN C M, XIE Z Q. The Continuation Method for Multi-solution of Nonlinear Differential Equations[M]. Beijing:Science Press, 2005. |
[15] | LYAPUNOV A M. The general problem of the stability of motion[J]. International Journal of Control, 1992, 55(3):531-534. |
[16] | 马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京:科学出版社, 2001. MA Z E, ZHOU Y C. Qualitative Method and Stability of Ordinary Differential Equations[M]. Beijing:Science Press, 2001. |
[17] | GHOMMIDH C, VAIJA J, BOLARINWA S, et al. Oscillatory behaviour of Zymomonas in continuous cultures:a simple stochastic model[J]. Biotechnology Letters, 1989, 11(9):659-664. |
[18] | 尤里·阿·库兹涅佐夫. 应用分支理论基础[M]. 金成桴, 译. 北京:科学出版社, 2010. KUZNETSOV Y A. Fundamental Applied Bifurcation Theory[M]. JIN C F, trans. Beijing:Science Press, 2010. |
[19] | 张楠. 非线性聚合过程的稳定性与分岔特性调控[D]. 北京:清华大学, 2016. ZHANG N. Bifurcation control and ajustment of nonlinear polymerization processes[D]. Beijing:Tsinghua University, 2016. |
[20] | ZHANG N, QIU T, CHEN B. Bifurcation control and eigenstructure assignment in continuous solution polymerization of vinyl acetate[J]. Chinese Journal of Chemical Engineering, 2015, 23(9):1523-1529. |
[21] | DOEDEL E J. AUTO:a program for the automatic bifurcation analysis of autonomous systems[J]. Congr. Numer., 1981, 30:265-284. |
[22] | BACK A, GUCKENHEIMER J, MYERS M, et al. DsTool:computer assisted exploration of dynamical systems[J]. Notices Amer. Math. Soc., 1992, 39(4):303-309. |
[23] | DHOOGE A, GOVAERTS W, KUZNETSOV Y A. MATCONT:a MATLAB package for numerical bifurcation analysis of ODEs[J]. ACM Transactions on Mathematical Software (TOMS), 2003, 29(2):141-164. |
[24] | WANG H Z, CHEN B Z, HE X R, et al. Numerical analysis tool for obtaining steady-state solutions and analyzing their stability characteristics for nonlinear dynamic systems[J]. Journal of Chemical Engineering of Japan, 2010, 43(4):394-400. |
[25] | VAN HEERDEN C. Autothermic processes[J]. Industrial & Engineering Chemistry, 1953, 45(6):1242-1247. |
[26] | BILOUS O, AMUNDSON N R. Chemical reactor stability and sensitivity[J]. AIChE Journal, 1955, 1(4):513-521. |
[27] | UPPAL A, RAY W, POORE A. On the dynamic behavior of continuous stirred tank reactors[J]. Chemical Engineering Science, 1974, 29(4):967-985. |
[28] | WANG H Z, YUAN Z H, CHEN B Z, et al. Analysis of the stability and controllability of chemical processes[J]. Computers & Chemical Engineering, 2011, 35(6):1101-1109. |
[29] | HAMER J, AKRAMOV T, RAY W. The dynamic behavior of continuous polymerization reactors(Ⅱ):Nonisothermal solution homopolymerization and copolymerization in a CSTR[J]. Chemical Engineering Science, 1981, 36(12):1897-1914. |
[30] | SCHMIDT A D, RAY W H. The dynamic behavior of continuous polymerization reactors(Ⅰ):Isothermal solution polymerization in a CSTR[J]. Chemical Engineering Science, 1981, 36(8):1401-1410. |
[31] | SCHMIDT A, CLINCH A, RAY W. The dynamic behaviour of continuous polymerization reactors(Ⅲ):An experimental study of multiple steady states in solution polymerization[J]. Chemical Engineering Science, 1984, 39(3):419-432. |
[32] | TEYMOUR F, RAY W. The dynamic behavior of continuous solution polymerization reactors(Ⅳ):Dynamic stability and bifurcation analysis of an experimental reactor[J]. Chemical Engineering Science, 1989, 44(9):1967-1982. |
[33] | TEYMOUR F, RAY W. The dynamic behavior of continuous polymerization reactors(Ⅴ):Experimental investigation of limit-cycle behavior for vinyl acetate polymerization[J]. Chemical Engineering Science, 1992, 47(15/16):4121-4132. |
[34] | TEYMOUR F, RAY W. The dynamic behavior of continuous polymerization reactors(Ⅵ):Complex dynamics in full-scale reactors[J]. Chemical Engineering Science, 1992, 47(15):4133-4140. |
[35] | PINTO J, RAY W. The dynamic behavior of continuous solution polymerization reactors(Ⅶ):Experimental study of a copolymerization reactor[J]. Chemical Engineering Science, 1995, 50(4):715-736. |
[36] | PINTO J, RAY W. The dynamic behavior of continuous solution polymerization reactors(Ⅷ):A full bifurcation analysis of a lab-scale copolymerization reactor[J]. Chemical Engineering Science, 1995, 50(6):1041-1056. |
[37] | PINTO J, RAY W H. The dynamic behavior of continuous solution polymerization reactors(IX):Effects of inhibition[J]. Chemical Engineering Science, 1996, 51(1):63-79. |
[38] | 刘柱彬, 邱彤, 赵劲松. 气相卧式搅拌釜聚丙烯反应器的模拟及多稳态分析[J]. 化工学报, 2014, 65(11):4451-4458. LIU Z B, QIU T, ZHAO J S. Modeling and steady-state multiplicity analysis of gas-phase polypropylene horizontal stirred bed reactor[J]. CIESC Journal, 2014, 65(11):4451-4458. |
[39] | YUAN Z, WANG P, YANG C. Steady-state multiplicity analysis of two-stage-riser catalytic pyrolysis processes[J]. Computers & Chemical Engineering, 2015, 73:49-63. |
[40] | XIU Z L, ZENG A P, DECKWER W D. Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition[J]. Biotechnology and Bioengineering, 1998, 57(3):251-261. |
[41] | MEEL A, SEIDER W D, SOROUSH M. Game theoretic approach to multiobjective designs:focus on inherent safety[J]. AIChE Journal, 2006, 52(1):228-246. |
[42] | 袁志宏, 王杭州, 陈丙珍, 等. 厌氧型发酵生产丙二醇体系的操作区域分区与分析[C]//中国过程系统工程年会暨中国MES年会, 2009. YUAN Z H, WANG H Z, CHEN B Z, et al. Analysis and operating zone segregation of anaerobic fermentation system[C]//Symposium of Process Systems Engineering and MES. 2009. |
[43] | WANG H Z, ZHANG N, QIU T, et al. A process design framework for considering the stability of steady state operating points and Hopf singularity points in chemical processes[J]. Chemical Engineering Science, 2013, 99:252-264. |
[44] | KOKOSSIS A, FLOUDAS C. Stability in optimal design:synthesis of complex reactor networks[J]. AIChE Journal, 1994, 40(5):849-861. |
[45] | BLANCO A B M, BANDONI J A. Interaction between process design and process operability of chemical processes:an eigenvalue optimization approach[J]. Computers & Chemical Engineering, 2003, 27(8):1291-1301. |
[46] | BLANCO A M, BANDONI J A. Design for operability:a singular-value optimization approach within a multiple-objective framework[J]. Industrial & Engineering Chemistry Research, 2003, 42(19):4340-4347. |
[47] | BLANCO A M, BANDONI J A. Eigenvalue and singular value optimization[J]. Mecanica Computational, 2003, 22:1258-1272. |
[48] | BLANCO A M, BANDONI J A, BIEGLER L. Re-design of the Tennessee Eastman challenge process:an eigenvalue optimization approach[C]//Proceedings of Foundations of Computer Aided Process Design. 2004:517-520. |
[49] | BLANCO A M, BANDONI J A. Eigenvalue optimization-based formulations for nonlinear dynamics and control problems[J]. Chemical Engineering and Processing:Process Intensification, 2007, 46(11):1192-1199. |
[50] | LEWIS A S, OVERTON M L. Eigenvalue optimization[J]. Acta Numerica, 1996, 5(1):149-190. |
[51] | RINGERTZ U T. Eigenvalues in Optimum Structural Design. Large-scale Optimization with Applications[M]. New York:Springer, 1997:135-149. |
[52] | HURWITZ A. On the conditions under which an equation has only roots with negative real parts[J]. Selected Papers on Mathematical Trends in Control Theory, 1964, 65:273-284. |
[53] | CHANG Y, SAHINIDIS N V. Optimization of metabolic pathways under stability considerations[J]. Computers & Chemical Engineering, 2005, 29(3):467-479. |
[54] | XIA Z, ZHAO J S. Steady-state optimization of chemical processes with guaranteed robust stability and controllability under parametric uncertainty and disturbances[J]. Computers & Chemical Engineering, 2015, 77:116-134. |
[55] | XIA Z, ZHAO J S. Robust optimization of index-2 differential algebraic equations with guaranteed stability under parametric uncertainty:application to a reactor-separator-recycle process[J]. Industrial & Engineering Chemistry Research, 2015, 54(41):10031-10039. |
[56] | WANG H Z, ZHANG N, QIU T, et al. Optimization of a continuous fermentation process producing 1, 3-propane diol with Hopf singularity and unstable operating points as constraints[J]. Chemical Engineering Science, 2014, 116:668-681. |
[57] | CHANG H C, CHEN L H. Bifurcation characteristics of nonlinear systems under conventional PID control[J]. Chemical Engineering Science, 1984, 39(7/8):1127-1142. |
[58] | LUO L, ZHANG N, XIA Z, et al. Dynamics and stability analysis of gas-phase bulk polymerization of propylene[J]. Chemical Engineering Science, 2016, 143:12-22. |
[59] | HASSOUNEH M A, LEE H C, ABED E H, et al. Washout filters in feedback control:benefits, limitations and extensions[C]//Proceedings of the 2004 American Control Conference. 2004:3950-3955. |
[60] | LEVINE W S. The Control Handbook[M]. 2nd ed. Boca Raton:CRC Press, 1996. |
[61] | ABED E H, FU J H. Local feedback stabilization and bifurcation control(Ⅰ):Hopf bifurcation[J]. Systems & Control Letters, 1986, 7(1):11-17. |
[62] | ABED E H, FU J H. Local feedback stabilization and bifurcation control(Ⅱ):Stationary bifurcation[J]. Systems & Control Letters, 1987, 8(5):467-473. |
[63] | WANG H Z, ZHANG N, QIU T, et al. Method for regulating oscillatory dynamic behavior in a Zymomonas mobiliz continuous fermentation process[J]. Industrial & Engineering Chemistry Research, 2014, 53(31):12399-12410. |
[64] | MÖNNIGMANN M, MARQUARDT W. Bifurcation placement of Hopf points for stabilization of equilibria[C]//Proceedings of the 15th IFAC World. 2002. |
[65] | HYNNE F, SORENSEN P G, MOLLER T. Complete optimization of models of the Belousov-Zhabotinsky reaction at a Hopf bifurcation[J]. The Journal of Chemical Physics, 1993, 98(1):219-230. |
[66] | BASSO M, EVANGELISTI A, GENESIO R, et al. On bifurcation control in time delay feedback systems[J]. International Journal of Bifurcation and Chaos, 1998, 8(4):713-721. |
[67] | YU P, CHEN G. Hopf bifurcation control using nonlinear feedback with polynomial functions[J]. International Journal of Bifurcation and Chaos, 2004, 14(5):1683-1704. |
[68] | KANG W. Bifurcation and normal form of nonlinear control systems (Ⅰ)[J]. SIAM Journal on Control and Optimization, 1998, 36(1):193-212. |
[69] | KANG W. Bifurcation and normal form of nonlinear control systems. (Ⅱ)[J]. SIAM Journal on Control and Optimization, 1998, 36(1):213-232. |
[70] | MOIOLA J, CHEN C. Controlling the multiplicity of limit cycles[C]//Proceedings of the 37th IEEE Conference. 1998:3052-3057. |
[71] | LEE H C, ABED E H. Washout filters in the bifurcation control of high alpha flight dynamics[C]//American Control Conference. 1991:206-211. |
[72] | LEE H C. Robust control of bifurcating nonlinear systems with applications[D]. College Park:University of Maryland, 1991. |
[73] | ABED E H, LEE H C. Nonlinear stabilization of high angle-of-attack flight dynamics using bifurcation control[R]. College Park:University of Maryland, 1990. |
[74] | WANG H O, ABED E H. Bifurcation control of a chaotic system[J]. Automatica, 1995, 31(9):1213-1226. |
[75] | WANG J, CHEN L, FEI X. Bifurcation control of the Hodgkin-Huxley equations[J]. Chaos, Solitons & Fractals, 2007, 33(1):217-224. |
[76] | DING L, HOU C. Stabilizing control of Hopf bifurcation in the Hodgkin-Huxley model via washout filter with linear control term[J]. Nonlinear Dynamics, 2010, 60(1/2):131-139. |
[77] | JIANG H, CHEN B Z. Study on dynamic behavior adjustment of nonlinear chemical processes[J]. AIChE Journal, 2016, 62(9):3189-3198. |
[78] | ZHANG N, SEIDER W D, CHEN B Z. Bifurcation control of high-dimensional nonlinear chemical processes using an extended washout-filter algorithm[J]. Computers & Chemical Engineering, 2016, 84:458-481. |
[79] | WICAKSONO D S, MARQUARDT W. Reformulation strategies for eigenvalue optimization using Sylvester's criterion and Cholesky decomposition[C]//Proceedings of the 23rd European Symposium on Computer Aided Process Engineering. 2013:487-492. |
[80] | GOLUB G H, VAN LOAN C F. Matrix Computations[M]. 4th ed. Baltimore:JHU Press, 2012. |
[81] | ZHANG Y, CHUFU L, XIAORONG H, et al. Simulation and optimization in the process of toluene liquid-phase catalytic oxidation[J]. Chinese Journal of Chemical Engineering, 2008, 16(1):36-38. |
[82] | WANG H Z, ZHANG N, QIU T, et al. Modeling, simulation and analysis of the liquid-phase catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2010, 158(2):220-224. |
[83] | GROSSMANN I E, SARGENT R W H. Optimum design of chemical plants with uncertain parameters[J]. AIChE Journal, 1978, 24(6):1021-1028. |
[84] | GROSSMANN I E, HALEMANE K P. Decomposition strategy for designing flexible chemical plants[J]. AIChE Journal, 1982, 28(4):686-694. |
[85] | GROSSMANN I E, HALEMANE K P, SWANEY R E. Optimization strategies for flexible chemical process[J]. Computers & Chemical Engineering, 1983, 7(4):439-462. |
[86] | HALEMANE K P, GROSSMANN I E. Optimal process design under uncertainty[J]. AIChE Journal, 1983, 29(3):425-433. |
[87] | SWANEY R E, GROSSMANN I E. An index for operational flexibility in chemical process design(Ⅰ)[J]. AIChE Journal, 1985, 31(4):621-630. |
[88] | SWANEY R E, GROSSMANN I E. An index for operational flexibility in chemical process design(Ⅱ)[J]. AIChE Journal, 1985, 31(4):631-641. |
[89] | GROSSMANN I E, FLOUDAS C A. Active constraint strategy for flexibility analysis in chemical process[J]. Computers & Chemical Engineering, 1987, 11(6):675-693. |
[90] | PISTIKOPOULOS E N, GROSSMANN I E. Optimal retrofit design for improving process flexibility in linear systems[J]. Computers & Chemical Engineering, 1988, 12(7):719-731. |
[91] | PISTIKOPOULOS E N, GROSSMANN I E. Optimal retrofit design for improving process flexibility in nonlinear systems(I):Fixed degree of flexibility[J]. Computers & Chemical Engineering, 1989, 13(9):1003-1016. |
[92] | PISTIKOPOULOS E N, GROSSMANN I E. Optimal retrofit design for improving process flexibility in nonlinear systems(Ⅱ):Optimal level of flexibility[J]. Computers & Chemical Engineering, 1989, 13(10):1087-1096. |
[93] | JIANG H, CHEN B Z, WANG H Z, et al. Novel method for considering process flexibility and stability simultaneously[J]. Industrial & Engineering Chemistry Research, 2014, 53(38):14765-14775. |
[94] | MOHIDEEN M, PERKINS J, PISTIKOPOULOS E. Robust stability considerations in optimal design of dynamic systems under uncertainty[J]. Journal of Process Control, 1997, 7(5):371-385. |
[95] | MÖNNIGMANN M, MARQUARDT W. Normal vectors on manifolds of critical points for parametric robustness of equilibrium solutions of ODE systems[J]. Journal of Nonlinear Science, 2002, 12(2):85-112. |
[96] | MÖNNIGMANN M, MARQUARDT W. Steady-state process optimization with guaranteed robust stability and feasibility[J]. AIChE Journal, 2003, 49(12):3110-3126. |
[97] | MONNIGMANN M, MARQUARDT W. Steady-state process optimization with guaranteed robust stability and flexibility:application to HDA reaction section[J]. Industrial & Engineering Chemistry Research, 2005, 44(8):2737-2753. |
[98] | CHANG Y, SAHINIDIS N V. Steady-state process optimization with guaranteed robust stability under parametric uncertainty[J]. AIChE Journal, 2011, 57(12):3395-3407. |
[99] | TRAINOR M, GIANNAKEAS V, KISS C, et al. Optimal process and control design under uncertainty:a methodology with robust feasibility and stability analyses[J]. Chemical Engineering Science, 2013, 104:1065-1080. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[9] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[12] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[13] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[14] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[15] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||