[1] |
张团慧, 范萌琦, 王晋, 等. 导电材料的分类及其研究进展[J]. 化工新型材料, 2016, (10):22-24. ZHANG T H, FAN M Q, WANG J, et al. Classification of conductive material and its research progress[J]. New Chemical Materials, 2016, (10):22-24.
|
[2] |
WENG Z, SU Y, WANG D W, et al. Graphene-cellulose paper flexible supercapacitors[J]. Advanced Energy Materials, 2011, 1(5):917-922.
|
[3] |
XIAO P, YI N, ZHANG T, et al. Construction of a fish-like robot based on high performance graphene/PVDF bimorph actuation materials[J]. Advanced Science, 2016, 3(6):1500438.
|
[4] |
YANG C, WANG J, KANG W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors[J]. Advanced Materials, 2014, 26(13):2022-2027.
|
[5] |
POLITANO A, MARINO A R, CAMPI D, et al. Elastic properties of a macroscopic graphene sample from phonon dispersion measurements[J]. Carbon, 2012, 50(13):4903-4910.
|
[6] |
LEE C, WEI X, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
|
[7] |
BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9):351-355.
|
[8] |
GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene:prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15):151911.
|
[9] |
夏凯伦, 蹇木强, 张莹莹. 纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J]. 物理化学学报, 2016, (10):2427-2446. XIA K L, JIAN M Q, ZHANG Y Y. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Phys.-Chim.Sin., 2016, (10):2427-2446.
|
[10] |
BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
|
[11] |
ALQUS R, EICHHORN S J, BRYCE R A. Molecular dynamics of cellulose amphiphilicity at the graphene-water interface[J]. Biomacromolecules, 2015, 16(6):1771-1783.
|
[12] |
YOKOTA S, UENO T, KITAOKA T, et al. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface[J]. Carbohydrate Research, 2007, 342(17):2593-2598.
|
[13] |
VADUKUMPULLY S, PAUL J, MAHANTA N, et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability[J]. Carbon, 2011, 49(1):198-205.
|
[14] |
匡达, 胡文彬. 石墨烯复合材料的研究进展[J]. 无机材料学报, 2013, (3):235-246. KUANG D, HU W B. Research progress of graphene composites[J]. Journal of Inorganic Materials, 2013, (3):235-246.
|
[15] |
陈志昌, 陈思浩, 王继虎, 等. 石墨烯/聚乳酸复合膜的制备及其性能研究[J]. 材料导报, 2015, (22):35-38. CHEN Z C, CHEN S H, WANG J H, et al. Preparation and characterization of graphene/PLA film[J]. Materials Review, 2015, (22):35-38.
|
[16] |
ZHU H, XIAO Z, LIU D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7):2105-2111.
|
[17] |
IWAMOTO S, KAI W, ISOGAI T, et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J]. Polymer Degradation and Stability, 2010, 95(8):1394-1398.
|
[18] |
董青. 石墨烯掺杂PLA纳米纤维膜的研究[D]. 苏州:苏州大学, 2015. DONG Q. Study of the electrospinning ploylactied nanofibrous membrane modified by graphene[D]. Suzhou:Soochow University, 2015.
|
[19] |
JONOOBI M, HARUN J, MATHEW A P, et al. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology, 2010, 70(12):1742-1747.
|
[20] |
LIU L, NIU Z, ZHANG L, et al. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors[J]. Advanced Materials, 2014, 26(28):4855-4862.
|
[21] |
MAHMOUDIAN S, WAHIT M U, IMRAN M, et al. A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(7):5233-5239.
|
[22] |
白浩龙. 纳米纤维素改性聚偏氟乙烯膜材料性能研究[D]. 北京:北京林业大学, 2015. BAI H L. The study of properties of poly (vinylidene fluoride) membrane material modified by cellulose nanofibrils[D]. Beijing:Beijing Forestry Univerity, 2015.
|
[23] |
PATOLE A S, PATOLE S P, KANG H, et al. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization[J]. Journal of Colloid and Interface Science, 2010, 350(2):530-537.
|
[24] |
GENG Y, WANG S J, KIM J K. Preparation of graphite nanoplatelets and graphene sheets[J]. Journal of Colloid and Interface Science, 2009, 336(2):592-598.
|
[25] |
李昌垒, 马君志, 秦翠梅, 等. 石墨烯与再生纤维素复合纤维制备及性能研究[J]. 针织工业, 2015, (6):6-8. LI C L, MA J Z, QIN C M, et al. Preparation and properties study of graphene/regenerated cellulose composite fiber[J]. Knitting Industries, 2015, (6):6-8.
|
[26] |
TIAN M, QU L, ZHANG X, et al. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers[J]. Carbohydrate Polymers, 2014, 111(111C):456.
|
[27] |
高玉荣, 黄培, 孙佩佩, 等. 石墨烯/纤维素复合材料的制备及应用[J]. 化学进展, 2016, 28(5):647-656. GAO Y R, HUANG P, SUN P P, et al. Preparation and application of graphene/cellulose composites[J]. Progress in Chemistry, 2016, 28(5):647-656.
|
[28] |
董奇志, 朱俐英, 余刚, 等. 聚乳酸导电高分子复合材料的研究进展[J]. 材料导报, 2013, (21):66-72. DONG Q Z, ZHU L Y, YU G, et al. Research progress in poly lactic acid conductive polymer composites[J]. Materials Review, 2013, (21):66-72.
|
[29] |
KANG Y R, LI Y L, HOU F, et al. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage[J]. Nanoscale, 2012, 4:3248-3253.
|
[30] |
OUYANG W Z, SUN J H, MEMON J, et al. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors[J]. Carbon, 2013, 62:501.
|
[31] |
南松楠. 基于石墨烯导电纸的制备及其性能研究[D]. 广洲:华南理工大学, 2015. NAN S N. Study of preparation and properties of graphene-based conductive paper[D]. Guangzhou:South China University of Technology, 2015.
|