CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2655-2663.DOI: 10.11949/j.issn.0438-1157.20171293
Previous Articles Next Articles
YIN Andong, DENG Wenyi, MA Jingchen, SU Yaxin
Received:
2017-09-27
Revised:
2017-12-03
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China (51408111).
印安冬, 邓文义, 马璟宸, 苏亚欣
通讯作者:
邓文义
基金资助:
国家自然科学基金项目(51408111)。
CLC Number:
YIN Andong, DENG Wenyi, MA Jingchen, SU Yaxin. Properties on NO removal over pyrolyzed sludge carbon[J]. CIESC Journal, 2018, 69(6): 2655-2663.
印安冬, 邓文义, 马璟宸, 苏亚欣. 污泥热解炭脱除NO特性[J]. 化工学报, 2018, 69(6): 2655-2663.
[1] | Grzybek T, Rog? M, PAPP H. The interaction of NO with active carbons promoted with transition metal oxides/hydroxides[J]. Catalysis Today, 2004, 90(1/2):61-68. |
[2] | Bueno-LÓpez A, Soriano-Mora J M, GarcÍa-GarcÍa A. Study of the temperature window for the selective reduction of NOx in O2-rich gas mixtures by metal-loaded carbon[J]. Catalysis Communications, 2006, 7(9):678-684. |
[3] | IllÁn-GÓmez M, Raymundo-PiÑero E, GARCÍA-GARCÍA A, et al. Catalytic NOx reduction by carbon supporting metals[J]. Applied Catalysis B:Environmental, 1999, 20(4):267-275. |
[4] | Xue Y, Lu G, Guo Y, et al. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B:Environmental, 2008, 79(3):262-269. |
[5] | LI X, DONG Z, DOU J, et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Processing Technology, 2016, 148:91-98. |
[6] | Huang B, HuanG R, Jin D, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today, 2007, 126(3/4):279-283. |
[7] | Wu C, Sun X, Shen B, et al. Evaluation of carbon nanotubes produced from toluene steam reforming as catalyst support for selective catalytic reduction of NOx[J]. Journal of the Energy Institute, 2014, 87(4):367-371. |
[8] | Yoshikawa M, YASUTAKE A, Mochida I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers[J]. Applied Catalysis A:General, 1998, 173(2):239-245. |
[9] | Inguanzo M, DOMÍNgUEZ A, MenÉndez J A, et al. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas fractions[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1):209-222. |
[10] | DomÍnguez A, MenÉndezJ A, Inguanzo M, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource Technology, 2006, 97(10):1185-1193 |
[11] | Deng W Y, Su Y X, Liu S G, et al. Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(17):9169-9179. |
[12] | Chen H, Chen D, Hong L. Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char[J]. Applied Energy, 2015, 156:767-775. |
[13] | Cha J S, Choi J C, Ko J H, et al. The low-temperature SCR of NO over rice straw and sewage sludge derived char[J]. Chemical Engineering Journal, 2010, 156(2):321-327. |
[14] | ROS A, LILLO-RÓDENAS M A, FUENTE E, et al. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere, 2006, 65(1):132-140. |
[15] | Song X, Zhang Y, Chang C. Novel method for preparing activated carbons with high specific surface area from rice husk[J]. Industrial & Engineering Chemistry Research, 2012, 51(46):15075-15081. |
[16] | Liang M, Kang W, Xie K. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. Journal of Natural Gas Chemistry, 2009, 18(1):110-113. |
[17] | Fgigueiredo J L, Pereira M F R. The role of surface chemistry in catalysis with carbons[J]. Catalysis Today, 2010, 150(1/2):2-7. |
[18] | Xue Y, Guo Y, Zhang Z, et al. The role of surface properties of activated carbon in the catalytic reduction of NO by carbon[J]. Applied Surface Science, 2008, 255(5):2591-2595. |
[19] | 高志明, 杨向光, 吴越. 活性炭表面含氧基团的生成及对NO的还原作用[J]. 催化学报, 1996, 17(4):327-329. Gao Z M, Yang X G, Wu Y. Formation of surface oxides and nitric oxide reduction on active carbon-supported cupric oxide catalysts[J]. Chinese Journal of Catalysis, 1996, 17(4):327-329. |
[20] | Zazo J A, Fraile A F, REY A, et al. Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO[J]. Catalysis Today, 2009, 143(3/4):341-346. |
[21] | Yang N, Yu J L, Dou J X, et al. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Processing Technology, 2016, 152:102-107. |
[22] | 高尚愚, 安部郁夫, 棚田成纪. 表面改性活性炭对苯酚及苯磺酸吸附的研究[J]. 林产化学与工业, 1994, (3):29-34. Gao S Y, Morinomiya J, YOSHIHARU H. Adsorption behavior of phenol and benzene sulfonic acid on modified activated carbon in aqueous solution[J]. Chemistry and Industry of Forest Products, 1994, (3):29-34. |
[23] | 翟云波, 刘涛, 魏先勋, 等. 城市污泥衍生催化剂上NH3选择性催化还原NOx[J]. 湖南大学学报(自然科学版), 2006, 33(6):110-114. Zhai Y B, Liu T, Wei X X, et al. Selective catalytic reduction of NOx with NH3 over the municipal sewage sludge based catalyst[J]. Journal of Hunan University (Natural Sciences), 2006, 33(6):110-114. |
[24] | 谢招娣, 马承愚, 宋新山. KOH和ZnCl2活化剂对苎麻秆基活性炭微观结构的影响[J]. 高分子材料与科学, 2012, 28(8):105-109. Xie Z D, Ma C Y, Song X S. Effect of KOH and ZnCl2 activators on microstructure of ramie stalk based activated carbon[J]. High Polymer Materials Science & Engineering, 2012, 28(8):105-109. |
[25] | IllÁn-GÓmez M J, Linares-solano A, Lecea S M D. Nitrogen oxide (NO) reduction by activated carbons(1):The role of carbon porosity and surface area[J]. Energy & Fuels, 1993, 7(1):146-154. |
[26] | IllÁn-GÓmez M J, Linares-solano A, Radovic L R. NO reduction by activated carbons(2):Catalytic effect of potassium[J]. Energy & Fuels, 1995, 9(1):97-103. |
[27] | IllÁn-GÓmez M J, Linares-solano A, Radovic L R. NO reduction by activated carbons(3):Influence of catalyst loading on the catalytic effect of potassium[J]. Energy & Fuels, 1995, 9(1):104-111. |
[28] | IllÁn-GÓmez M J, Linares-solano A, Radovic L R, et al. NO reduction by activated carbons(4):Catalysis by calcium[J]. Energy & Fuels, 1995, 9(1):112-118. |
[29] | IllÁn-GÓmez M J, Linares-solano A, Radovic L R. NO reduction by activated carbons(5):Catalytic effect of iron[J]. Energy & Fuels, 1995, 9(3):540-548. |
[30] | IllÁn-GÓmez M J, Linares-solano A, LECEA S M D. NO reduction by activated carbon(6):Catalysis by transition metals[J]. Energy & Fuels, 1995, 9(6):976-983. |
[31] | IllÁn-GÓmez M J, Linares-solano A, LECEA S M D. NO reduction by activated carbon(7):Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10(1):158-168. |
[32] | Yao Z W, Dong H, Shang Y. Catalytic activities of iron phosphide for NO dissociation and reduction with hydrogen[J]. Journal of Alloys & Compounds, 2009, 474(1/2):L10-L13. |
[33] | Karroua W, LadriÈRe J, Matralis H. Characterisation of unsupported FeMoS catalysts:stability during reaction and effect of the sulfiding temperature[J]. Journal of Catalysis, 1992, 138(2):640-658. |
[34] | Min H J, Dong H L, Bae J W. Reduction and oxidation kinetics of different phases of iron oxides[J]. International Journal of Hydrogen Energy, 2015, 40(6):2613-2620. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[11] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[14] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[15] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 481
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||