CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1335-1342.DOI: 10.11949/0438-1157.20190871
• Energy and environmental engineering • Previous Articles Next Articles
Lianyan ZHU1(),Yuming WANG2,Xingfu ZHOU2()
Received:
2019-07-31
Revised:
2019-10-31
Online:
2020-03-05
Published:
2020-03-05
Contact:
Xingfu ZHOU
通讯作者:
周幸福
作者简介:
朱连燕(1976—),女,副教授,基金资助:
CLC Number:
Lianyan ZHU, Yuming WANG, Xingfu ZHOU. Application of response surface methodology in optimizing electrocatalytic degradation of dye wastewater[J]. CIESC Journal, 2020, 71(3): 1335-1342.
朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
Add to citation manager EndNote|Ris|BibTeX
因子 | 变量 | 水平编码(x) | ||||
---|---|---|---|---|---|---|
-1.68 | -1 | 0 | 1 | 1.68 | ||
pH | X1 | 3.64 | 5 | 7 | 9 | 10.36 |
电压 | X2 | 3.32 | 4 | 5 | 6 | 6.68 |
电极间距 | X3 | 0.32 | 1 | 2 | 3 | 3.68 |
Table 1 Code and levels of experimental variables
因子 | 变量 | 水平编码(x) | ||||
---|---|---|---|---|---|---|
-1.68 | -1 | 0 | 1 | 1.68 | ||
pH | X1 | 3.64 | 5 | 7 | 9 | 10.36 |
电压 | X2 | 3.32 | 4 | 5 | 6 | 6.68 |
电极间距 | X3 | 0.32 | 1 | 2 | 3 | 3.68 |
实验序号 | X1 | X2 | X3 | pH | 电压/V | 电极距离/cm | 脱色率,Y/% | |
---|---|---|---|---|---|---|---|---|
观测值 | 预测值 | |||||||
1 | -1 | -1 | -1 | 5 | 4 | 1 | 66.99 | 68.18 |
2 | -1 | 1 | -1 | 5 | 6 | 1 | 92.60 | 91.56 |
3 | 1 | -1 | -1 | 9 | 4 | 1 | 44.24 | 45.36 |
4 | 1 | 1 | -1 | 9 | 6 | 1 | 89.86 | 91.30 |
5 | -1 | -1 | 1 | 5 | 4 | 3 | 51.50 | 49.19 |
6 | -1 | 1 | 1 | 5 | 6 | 3 | 83.58 | 81.59 |
7 | 1 | -1 | 1 | 9 | 4 | 3 | 31.84 | 32.01 |
8 | 1 | 1 | 1 | 9 | 6 | 3 | 89.03 | 86.97 |
9 | 0 | -1.68 | 0 | 7 | 3.32 | 2 | 28.24 | 27.71 |
10 | 0 | 1.68 | 0 | 7 | 6.68 | 2 | 91.83 | 93.58 |
11 | -1.68 | -1.68 | 0 | 3.64 | 5 | 2 | 72.91 | 74.96 |
12 | 1.68 | 0 | 0 | 10.36 | 5 | 2 | 61.14 | 60.31 |
13 | 0 | 0 | -1.68 | 7 | 5 | 0.32 | 91.86 | 89.83 |
14 | 0 | 0 | 1.68 | 7 | 5 | 3.68 | 66.96 | 70.22 |
15 | 0 | 0 | 0 | 7 | 5 | 2 | 88.66 | 88.40 |
16 | 0 | 0 | 0 | 7 | 5 | 2 | 89.42 | 88.40 |
17 | 0 | 0 | 0 | 7 | 5 | 2 | 87.41 | 88.40 |
18 | 0 | 0 | 0 | 7 | 5 | 2 | 86.75 | 88.40 |
19 | 0 | 0 | 0 | 7 | 5 | 2 | 89.06 | 88.40 |
20 | 0 | 0 | 0 | 7 | 5 | 2 | 89.33 | 88.40 |
Table 2 Results based on CCD experimental design
实验序号 | X1 | X2 | X3 | pH | 电压/V | 电极距离/cm | 脱色率,Y/% | |
---|---|---|---|---|---|---|---|---|
观测值 | 预测值 | |||||||
1 | -1 | -1 | -1 | 5 | 4 | 1 | 66.99 | 68.18 |
2 | -1 | 1 | -1 | 5 | 6 | 1 | 92.60 | 91.56 |
3 | 1 | -1 | -1 | 9 | 4 | 1 | 44.24 | 45.36 |
4 | 1 | 1 | -1 | 9 | 6 | 1 | 89.86 | 91.30 |
5 | -1 | -1 | 1 | 5 | 4 | 3 | 51.50 | 49.19 |
6 | -1 | 1 | 1 | 5 | 6 | 3 | 83.58 | 81.59 |
7 | 1 | -1 | 1 | 9 | 4 | 3 | 31.84 | 32.01 |
8 | 1 | 1 | 1 | 9 | 6 | 3 | 89.03 | 86.97 |
9 | 0 | -1.68 | 0 | 7 | 3.32 | 2 | 28.24 | 27.71 |
10 | 0 | 1.68 | 0 | 7 | 6.68 | 2 | 91.83 | 93.58 |
11 | -1.68 | -1.68 | 0 | 3.64 | 5 | 2 | 72.91 | 74.96 |
12 | 1.68 | 0 | 0 | 10.36 | 5 | 2 | 61.14 | 60.31 |
13 | 0 | 0 | -1.68 | 7 | 5 | 0.32 | 91.86 | 89.83 |
14 | 0 | 0 | 1.68 | 7 | 5 | 3.68 | 66.96 | 70.22 |
15 | 0 | 0 | 0 | 7 | 5 | 2 | 88.66 | 88.40 |
16 | 0 | 0 | 0 | 7 | 5 | 2 | 89.42 | 88.40 |
17 | 0 | 0 | 0 | 7 | 5 | 2 | 87.41 | 88.40 |
18 | 0 | 0 | 0 | 7 | 5 | 2 | 86.75 | 88.40 |
19 | 0 | 0 | 0 | 7 | 5 | 2 | 89.06 | 88.40 |
20 | 0 | 0 | 0 | 7 | 5 | 2 | 89.33 | 88.40 |
方差来源 | 自由度 | 偏差平方和 | 均方和 | F | P |
---|---|---|---|---|---|
模型 | 9 | 8280.41 | 920.05 | 189.91 | <0.0001 |
残差误差 | 10 | 48.45 | 4.83 | ||
失拟项 | 5 | 42.34 | 8.47 | 6.94 | 0.27 |
纯误差 | 5 | 6.10 | 1.22 | ||
总误差 | 19 | 8328.86 |
Table 3 Analysis of variance (ANOVA) for regression model
方差来源 | 自由度 | 偏差平方和 | 均方和 | F | P |
---|---|---|---|---|---|
模型 | 9 | 8280.41 | 920.05 | 189.91 | <0.0001 |
残差误差 | 10 | 48.45 | 4.83 | ||
失拟项 | 5 | 42.34 | 8.47 | 6.94 | 0.27 |
纯误差 | 5 | 6.10 | 1.22 | ||
总误差 | 19 | 8328.86 |
模型参数 | 估计值 | 标准误差 | t | P |
---|---|---|---|---|
常数项 | 88.404 | 0.8984 | 98.4069 | <0.0001 |
X1 | -4.360 | 0.5963 | -7.3113 | <0.0001 |
X2 | 19.583 | 0.5961 | 32.8543 | <0.0001 |
X3 | -5.828 | 0.5961 | -9.778 | <0.0001 |
X1×X1 | -7.357 | 0.5912 | -12.6592 | <0.0001 |
X2×X2 | -9.813 | 0.5802 | -16.913 | <0.0001 |
X3×X3 | -2.963 | 0.5802 | -5.107 | 0.0005 |
X1×X2 | 5.639 | 0.7788 | 7.2409 | <0.0001 |
X1×X3 | 1.409 | 0.7788 | 1.8097 | 0.016 |
X2×X3 | 2.255 | 0.7788 | 2.8952 | 0.1004 |
Table 4 Significance test of each regression coeffcient of regression model for decolorization efficiency
模型参数 | 估计值 | 标准误差 | t | P |
---|---|---|---|---|
常数项 | 88.404 | 0.8984 | 98.4069 | <0.0001 |
X1 | -4.360 | 0.5963 | -7.3113 | <0.0001 |
X2 | 19.583 | 0.5961 | 32.8543 | <0.0001 |
X3 | -5.828 | 0.5961 | -9.778 | <0.0001 |
X1×X1 | -7.357 | 0.5912 | -12.6592 | <0.0001 |
X2×X2 | -9.813 | 0.5802 | -16.913 | <0.0001 |
X3×X3 | -2.963 | 0.5802 | -5.107 | 0.0005 |
X1×X2 | 5.639 | 0.7788 | 7.2409 | <0.0001 |
X1×X3 | 1.409 | 0.7788 | 1.8097 | 0.016 |
X2×X3 | 2.255 | 0.7788 | 2.8952 | 0.1004 |
1 | 胡耀笛, 张利, 刘松, 等. 响应曲面法优化感应电芬顿预处理染料废水的运行参数[J]. 科学技术与工程, 2017, 17(27): 338-342. |
Hu Y D, Zhang L, Liu S, et al. Optimization study on induction electron-Fenton conditions for dye wastewater treatment using response surface methodology[J]. Science Technology and Engineering, 2017, 17(27): 338-342. | |
2 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
3 | Wang N, Zheng T, Zhang G, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. |
4 | 江霜英, 洪艳, 周荣丰, 等. 电解法应用于染料废水的预处理研究[J].同济大学学报(自然科学版), 2006, 34(5): 638-641. |
Jiang S Y, Hong Y, Zhou R F, et al. Pretreatment of dye wastewater by electrolysis process[J]. Journal of Tongji University(Natural Science), 2006, 34(5): 638-641. | |
5 | Yazdanbakhsh M R, Ghanadzadeh A, Moradi E. Synthesis of some new azo dyes derived from 4-hydroxy coumarin and spectrometric determination of their acidic dissociation constants [J]. Journal of Molecular Liquids, 2007, 136(1/2): 165-168. |
6 | Labiadh L, Barbucci A, Carpanese M P, et al. Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes[J]. Journal of Electronanalytical Chemistry, 2016, 766: 94-99. |
7 | 智丹, 王建兵, 王维一, 等. Ti/Ti4O7阳极电化学氧化降解水中的美托洛尔[J]. 环境科学学报, 2018, 38(5): 1858-1867. |
Zhi D, Wang J B, Wang W Y, et al. Electrochemical degradation of metoprolol in aquatic environment over a Ti/Ti4O7 anode [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1858-1867. | |
8 | 刘咚, 储昭奎, 王洪福, 等. 含聚丙烯酰胺类油田污水的电化学氧化处理[J]. 环境工程学报, 2017, 11(1): 291-296. |
Liu D, Chu Z K, Wang H F, et al. Electrochemical oxidation treatment of polyacrylamide-based oil field wastewater [J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 291-296. | |
9 | 魏旺, 孟冠华, 刘宝河, 等. 三维电极电解法处理氨氮废水的研究[J]. 工业水处理, 2018, 38(8): 74-77. |
Wei W, Meng G H, Liu B H, et al. Research on three-dimensional electrolysis method for the treatment of ammonia nitrogen wasterwater[J]. Industrial Water Treatment, 2018, 38(8): 74-77. | |
10 | Yi F, Chen S, Yuan C. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater [J]. Journal of Hazardous Materials, 2008, 157(1): 79-87. |
11 | Prakash K, Narayana J, Yanjerappa A N. Studies on degradation of reactive textile dyes solution by electrochemical method[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 952-961. |
12 | Zhou Q F, Li X, Yan F. Electrochemical oxidation of 1H, 1H, 2H, 2H perfluorooctane sulfonic acid (6: 2FTS) on DSA electrode: operating parameter and mechanism[J]. Journal Envirinmental Sciences, 2014, 26: 1733-1739. |
13 | Montgomery D C. Design and Analysis of Experiments [M]. 8th ed. New York: John Wiley & Sons, 2013. |
14 | 方俊涛. 响应曲面方法中试验设计与模型估计的比较研究[D]. 天津: 天津大学, 2011. |
Fang J T. Comparison for experimental designs and modeling in response surface methodology [D]. Tianjin: Tianjin University, 2011. | |
15 | 周鑫, 孙海龙, 张泽乾. 响应面法在污水处理工艺优化中的应用[J]. 化学研究与应用, 2017, 29(6): 753-760. |
Zhou X, Sun H L, Zhang Z Q. Application of process optimization of wasterwater treatment using response surface methodology[J]. Chemical Research and Application, 2017, 29(6): 753-760. | |
16 | 郭莹, 陈鸿汉, 张焕祯, 等. 基于Box-Behnken响应曲面法优化Fenton预处理高浓度染料中间体生产废水[J]. 环境科学研究, 2017, 30(5): 775-783. |
Guo Y, Chen H H, Zhang H Z, et al. Optimization of Fenton pre-treatment of high concentration dye intermediate wastewater based on Box-Behnken response surface methodology[J]. Research of Environmental Sciences, 2017, 30( 5) : 775-783. | |
17 | Erbay Z, Icier F. Optimization of hot air drying of olive leaves using response surface methodology[J]. J. Food Eng., 2009, 91: 533-541. |
18 | Hu F P, Liu Z M, Wang X M. Preparation of series of Ti-based electrode and electro-catalytic oxidation of dye wastewater[J]. Journal of Civial Architectural & Environmental Engineering, 2010, 32(5): 97-101. |
19 | 游杨光. 改性纳米氧化锌材料的冻干法制备及光催化性能研究 [D]. 北京: 北京化工大学, 2017. |
You Y G. Synthesis of modified nano-zinc oxide materials via freeze-drying process and photocatalytic performance study[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
20 | 乔仙蓉. 紫外可见光谱分析海娜粉中的指甲花醌 [J]. 日用化学工业, 2016, 46(3): 178-182. |
Qiao X R. UV-vis spectral analysis of lawsone in henna powder[J]. China Surfactant Detergent & Cosmetics, 2016, 46(3): 178-182. | |
21 | Liu H L, Chiou Y R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology [J]. Chemical Engineering Journal, 2005, 112(1/2/3): 173-179. |
22 | Zhang Q S, Wei Y, Zhou X F. Fabrication and electrocatalytic activity of TiO2 nanotubes based electrode with high oxygen [J]. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 1950-1956. |
23 | Poulomi R, Steffen B, Patrik S C. TiO2 nanotubes: synthesis and applications [J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939. |
24 | Ke W J, Fang G J, Liu Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137: 6730-6733. |
25 | Sahu O, Mazumdar B, Chaudhari P K. Electrochemical treatment of sugar industry wastewater: process optimization by response surface methodology[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1527-1540. |
26 | Hong F L, Peng J C, Lui W B. Optimization of the process variables for the synthesis of starch-based biodegradable resin using response surface methodology[J]. J. Appl. Polym. Sci., 2011, 119: 1797-1804 |
27 | Wei F, Wu B, Zhang J, et al. Modification of abandoned fine blue-coke: optimization study on removal of p-nitrophenol using response surface methodology [J]. RSC Advances, 2016, 6(16): 13537-13547. |
28 | Granato D, Ribeiro J C B, Castro I A, et al. Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology[J]. Food Chem., 2010, 121: 899-906. |
29 | Akkaya G K, Erkan H S, Sekman E, et al. Modeling and optimizing Fenton and electro-Fenton processes for dairy wastewater treatment using response surface methodology [J]. International Journal of Environmental Science & Technology, 2019, 16(5): 1-16. |
30 | Das S, Mishra S. Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach [J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 588-600. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[9] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[10] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[11] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[12] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[13] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[14] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[15] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||