CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2752-2759.DOI: 10.11949/0438-1157.20191370
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zhengzheng XIA1(),Jialiang LIU1,Jianjie NIU1,Han HU1,Qingshan ZHAO1(
),Mingbo WU2(
)
Received:
2019-11-11
Revised:
2020-02-03
Online:
2020-06-05
Published:
2020-06-05
Contact:
Qingshan ZHAO,Mingbo WU
夏争争1(),刘加亮1,牛建杰1,胡涵1,赵青山1(
),吴明铂2(
)
通讯作者:
赵青山,吴明铂
作者简介:
夏争争(1995—),男,硕士研究生,基金资助:
CLC Number:
Zhengzheng XIA, Jialiang LIU, Jianjie NIU, Han HU, Qingshan ZHAO, Mingbo WU. Highly dispersed SiO2/petroleum pitch-derived porous carbon composite as anode material for lithium-ion batteries[J]. CIESC Journal, 2020, 71(6): 2752-2759.
夏争争, 刘加亮, 牛建杰, 胡涵, 赵青山, 吴明铂. 高分散SiO2/石油沥青基多孔碳用于锂离子电池负极[J]. 化工学报, 2020, 71(6): 2752-2759.
1 | Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angew. Chem. Int. Ed. Engl., 2008, 47(16): 2930-2946. |
2 | Dufficy M K, Khan S A, Fedkiw P S. Hierarchical graphene-containing carbon nanofibers for lithium-ion battery anodes[J]. ACS Appl. Mater. Inter., 2016, 8(2): 1327-1336. |
3 | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603. |
4 | Roberts A D, Li X, Zhang H. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chem. Soc. Rev., 2014, 43(13): 4341-4356. |
5 | Shen X, Tian Z, Fan R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090. |
6 | Wang X, Lu X, Liu B, et al. Flexible energy-storage devices: design consideration and recent progress[J]. Adv. Mater., 2014, 26(28): 4763-4782. |
7 | Chen S P, Wu Q N, Wen M, et al. Sea-sponge-like structure of nano-Fe3O4 on skeleton-C with long cycle life under high rate for Li-ion batteries[J]. ACS Appl. Mater. Inter., 2018, 10(23): 19656-19663. |
8 | Choi S H, Jung D S, Choi J W, et al. Superior lithium-ion storage properties of Si-based composite powders with unique Si@carbon@void@graphene configuration[J]. Chem-Eur. J., 2015, 21(5): 2076-2082. |
9 | Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): a new energy storage anode material for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 1297-1304. |
10 | Li M, Gu J, Feng X, et al. Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability[J]. Electrochim. Acta, 2015, 164:163-170. |
11 | Choi S H, Nam G, Chae S, et al. Robust pitch on silicon nanolayer-embedded graphite for suppressing undesirable volume expansion[J]. Adv. Energy. Mater., 2019, 9(4): 1506-1514. |
12 | Kim W S, Choi J, Hong S H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery[J]. Nano Res., 2016, 9(7): 2174-2181. |
13 | Liu X, Du Y C, Hu L Y, et al. Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance[J]. J. Phys. Chem. C, 2015, 119(11): 5848-5854. |
14 | Yang Y, Yang X, Chen S, et al. Rational design of hierarchical carbon/mesoporous silicon composite sponges as high-performance flexible energy storage electrodes[J]. ACS Appl. Mater. Interfaces, 2017, 9(27): 22819-22825. |
15 | Yuan Z, Zhao N, Shi C, et al. Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance[J]. Chem. Phys. Lett., 2016, 651:19-23. |
16 | Deng B, Shen L, Liu Y, et al. Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery[J]. Chin. Chem. Lett., 2017, 28(12): 2281-2284. |
17 | Gong H X, Li N, Qian Y T. Synthesis of SiO2/C nanocomposites and their electrochemical properties[J]. International Journal of Electrochemical Science, 2013, 8(7): 9811-9817. |
18 | Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Sci. Rep., 2015, 5:10908. |
19 | Hu L, Luo B, Wu C, et al. Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes[J]. Journal of Energy Chemistry, 2019, 32:124-130. |
20 | Dai C L, Wang X Y, Huang Q H, et al. Porous carbide derived carbon[J]. Progress in Chemistry, 2008, 20(1): 42-47. |
21 | Long W, Fang B, Ignaszak A, et al. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries[J]. Chem. Soc. Rev., 2017, 46(23): 7176-7190. |
22 | Li J, Wang L, Li L, et al. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal- aspergillus niger bioleaching strategy[J]. ACS Appl. Mater. Interfaces, 2019, 11(8): 8072-8080. |
23 | Sun A, Zhong H, Zhou X, et al. Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries[J]. Appl. Surf. Sci., 2019, 470:454-461. |
24 | Ning H, Zhao Q, Zhang H, et al. Application of petroleum asphalt-based carbon materials in electrochemical energy storage[J]. Scientia Sinica Chimica, 2018, 48(4): 329-341. |
25 | Xiang Z, Chen Y, Li J, et al. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries[J]. J. Solid State Electrochem., 2017, 21(8): 2425-2432. |
26 | Jiao M, Liu K, Shi Z, et al. SiO2/carbon composite microspheres with hollow core-shell structure as a high-stability electrode for lithium-ion batteries[J]. ChemElectroChem, 2017, 4(3): 542-549. |
27 | Yao Y, Zhang J, Xue L, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. J. Power Sources, 2011, 196(23): 10240-10243. |
28 | Hou Y H, Yuan H L, Chen H, et al. The preparation and lithium battery performance of core-shell SiO2@Fe3O4@C composite[J]. Ceram. Int., 2017, 43(14): 11505-11510. |
29 | Zhang L. SiO2@graphite composite generated from sewage sludge as anode material for lithium ion batteries[J]. International Journal of Electrochemical Science, 2017, 12(11): 10221-10229. |
30 | Sim S, Oh P, Park S, et al. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries[J]. Adv. Mater., 2013, 25(32): 4498-4503. |
31 | Li H H, Wu X L, Sun H Z, et al. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance[J]. The Journal of Physical Chemistry C, 2015, 119(7): 3495-3501. |
32 | Favors Z, Wang W, Bay H H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Sci. Rep., 2014, 4: 4605. |
33 | Wang B B, Li F, Wang X J, et al. Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries[J]. Chem. Eng. J., 2019, 364: 57-69. |
34 | Tu J, Yuan Y, Zhan P, et al. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance[J]. The Journal of Physical Chemistry C, 2014, 118(14): 7357-7362. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[3] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[4] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[5] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[6] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[7] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[8] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[9] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[10] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[11] | Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon [J]. CIESC Journal, 2022, 73(4): 1817-1825. |
[12] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
[13] | Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials [J]. CIESC Journal, 2022, 73(12): 5625-5637. |
[14] | Liubin SONG, Yixuan WANG, Yinjie KUANG, Yubo XIA, Zhongliang XIAO. Development and prospect of pivotal materials and technologies in sodium-ion batteries [J]. CIESC Journal, 2022, 73(11): 4814-4825. |
[15] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 579
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||