1 |
Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angew. Chem. Int. Ed. Engl., 2008, 47(16): 2930-2946.
|
2 |
Dufficy M K, Khan S A, Fedkiw P S. Hierarchical graphene-containing carbon nanofibers for lithium-ion battery anodes[J]. ACS Appl. Mater. Inter., 2016, 8(2): 1327-1336.
|
3 |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
|
4 |
Roberts A D, Li X, Zhang H. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chem. Soc. Rev., 2014, 43(13): 4341-4356.
|
5 |
Shen X, Tian Z, Fan R, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090.
|
6 |
Wang X, Lu X, Liu B, et al. Flexible energy-storage devices: design consideration and recent progress[J]. Adv. Mater., 2014, 26(28): 4763-4782.
|
7 |
Chen S P, Wu Q N, Wen M, et al. Sea-sponge-like structure of nano-Fe3O4 on skeleton-C with long cycle life under high rate for Li-ion batteries[J]. ACS Appl. Mater. Inter., 2018, 10(23): 19656-19663.
|
8 |
Choi S H, Jung D S, Choi J W, et al. Superior lithium-ion storage properties of Si-based composite powders with unique Si@carbon@void@graphene configuration[J]. Chem-Eur. J., 2015, 21(5): 2076-2082.
|
9 |
Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): a new energy storage anode material for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 1297-1304.
|
10 |
Li M, Gu J, Feng X, et al. Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability[J]. Electrochim. Acta, 2015, 164:163-170.
|
11 |
Choi S H, Nam G, Chae S, et al. Robust pitch on silicon nanolayer-embedded graphite for suppressing undesirable volume expansion[J]. Adv. Energy. Mater., 2019, 9(4): 1506-1514.
|
12 |
Kim W S, Choi J, Hong S H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery[J]. Nano Res., 2016, 9(7): 2174-2181.
|
13 |
Liu X, Du Y C, Hu L Y, et al. Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance[J]. J. Phys. Chem. C, 2015, 119(11): 5848-5854.
|
14 |
Yang Y, Yang X, Chen S, et al. Rational design of hierarchical carbon/mesoporous silicon composite sponges as high-performance flexible energy storage electrodes[J]. ACS Appl. Mater. Interfaces, 2017, 9(27): 22819-22825.
|
15 |
Yuan Z, Zhao N, Shi C, et al. Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance[J]. Chem. Phys. Lett., 2016, 651:19-23.
|
16 |
Deng B, Shen L, Liu Y, et al. Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery[J]. Chin. Chem. Lett., 2017, 28(12): 2281-2284.
|
17 |
Gong H X, Li N, Qian Y T. Synthesis of SiO2/C nanocomposites and their electrochemical properties[J]. International Journal of Electrochemical Science, 2013, 8(7): 9811-9817.
|
18 |
Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Sci. Rep., 2015, 5:10908.
|
19 |
Hu L, Luo B, Wu C, et al. Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes[J]. Journal of Energy Chemistry, 2019, 32:124-130.
|
20 |
Dai C L, Wang X Y, Huang Q H, et al. Porous carbide derived carbon[J]. Progress in Chemistry, 2008, 20(1): 42-47.
|
21 |
Long W, Fang B, Ignaszak A, et al. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries[J]. Chem. Soc. Rev., 2017, 46(23): 7176-7190.
|
22 |
Li J, Wang L, Li L, et al. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal- aspergillus niger bioleaching strategy[J]. ACS Appl. Mater. Interfaces, 2019, 11(8): 8072-8080.
|
23 |
Sun A, Zhong H, Zhou X, et al. Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries[J]. Appl. Surf. Sci., 2019, 470:454-461.
|
24 |
Ning H, Zhao Q, Zhang H, et al. Application of petroleum asphalt-based carbon materials in electrochemical energy storage[J]. Scientia Sinica Chimica, 2018, 48(4): 329-341.
|
25 |
Xiang Z, Chen Y, Li J, et al. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries[J]. J. Solid State Electrochem., 2017, 21(8): 2425-2432.
|
26 |
Jiao M, Liu K, Shi Z, et al. SiO2/carbon composite microspheres with hollow core-shell structure as a high-stability electrode for lithium-ion batteries[J]. ChemElectroChem, 2017, 4(3): 542-549.
|
27 |
Yao Y, Zhang J, Xue L, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. J. Power Sources, 2011, 196(23): 10240-10243.
|
28 |
Hou Y H, Yuan H L, Chen H, et al. The preparation and lithium battery performance of core-shell SiO2@Fe3O4@C composite[J]. Ceram. Int., 2017, 43(14): 11505-11510.
|
29 |
Zhang L. SiO2@graphite composite generated from sewage sludge as anode material for lithium ion batteries[J]. International Journal of Electrochemical Science, 2017, 12(11): 10221-10229.
|
30 |
Sim S, Oh P, Park S, et al. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries[J]. Adv. Mater., 2013, 25(32): 4498-4503.
|
31 |
Li H H, Wu X L, Sun H Z, et al. Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance[J]. The Journal of Physical Chemistry C, 2015, 119(7): 3495-3501.
|
32 |
Favors Z, Wang W, Bay H H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Sci. Rep., 2014, 4: 4605.
|
33 |
Wang B B, Li F, Wang X J, et al. Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries[J]. Chem. Eng. J., 2019, 364: 57-69.
|
34 |
Tu J, Yuan Y, Zhan P, et al. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance[J]. The Journal of Physical Chemistry C, 2014, 118(14): 7357-7362.
|