CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2760-2767.DOI: 10.11949/0438-1157.20200088
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Lijun GAO(),Silin BAI,Sucen LIANG,Ye MU,Qiang DONG,Chao HU()
Received:
2020-01-19
Revised:
2020-04-01
Online:
2020-06-05
Published:
2020-06-05
Contact:
Chao HU
通讯作者:
胡超
作者简介:
高利军(1994—),男,博士研究生,基金资助:
CLC Number:
Lijun GAO, Silin BAI, Sucen LIANG, Ye MU, Qiang DONG, Chao HU. ZIF-derived porous carbon nanofibers for high-efficiency capacitive deionization[J]. CIESC Journal, 2020, 71(6): 2760-2767.
高利军, 白思林, 梁苏岑, 穆野, 董强, 胡超. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究[J]. 化工学报, 2020, 71(6): 2760-2767.
Add to citation manager EndNote|Ris|BibTeX
样品 | 比表面积/ (m2/g) | 介孔及大孔比表面积/ (m2/g) | 介孔及大孔比表面积占比/% | 总孔体积/ (cm3/g) | 介孔及大孔孔体积/ (cm3/g) | 介孔及大孔孔体积占比/% |
---|---|---|---|---|---|---|
ZIF/CNF | 180.63 | 132.36 | 73.28 | 0.77 | 0.75 | 97.31 |
CNF | 576.65 | 98.37 | 17.06 | 0.28 | 0.09 | 33.38 |
Table 1 Specific surface areas and pore volumes of carbon nanofiber materials
样品 | 比表面积/ (m2/g) | 介孔及大孔比表面积/ (m2/g) | 介孔及大孔比表面积占比/% | 总孔体积/ (cm3/g) | 介孔及大孔孔体积/ (cm3/g) | 介孔及大孔孔体积占比/% |
---|---|---|---|---|---|---|
ZIF/CNF | 180.63 | 132.36 | 73.28 | 0.77 | 0.75 | 97.31 |
CNF | 576.65 | 98.37 | 17.06 | 0.28 | 0.09 | 33.38 |
1 | Collins A. The global risks report 2019[R]. Switzerland: World Economic Forum, 2019. |
2 | 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370. |
Zheng Z Y, Li F C, Li Q, et al. Application research and development status of desalination technology[J]. Chinese Science Bulletin, 2016, 61(21): 2344-2370. | |
3 | Elimelech M, Phillip W A. The future of seawater desalination energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
4 | 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1): 1-12. |
Gao C J, Zhou Y, Liu L F. Status and prospect of reverse osmosis desalination technology[J]. Ocean Technology, 2016, 35(1): 1-12. | |
5 | Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348. |
6 | 杨飞黄. 电渗析(ED)技术和电去离子技术(EDI)的应用研究[J]. 中国新技术新产品, 2015, 192(5): 42-44. |
Yang F H. Application research of electrodialysis technology and electrodeionization technology[J]. China New Technologies and Products, 2015, 192(5): 42-44. | |
7 | 颜海洋, 汪耀明, 蒋晨啸, 等. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(1): 672-681. |
Yan H Y, Wang Y M, Jiang C X, et al. Application, opportunities and challenges of ion membrane electrodialysis in zero discharge of high-salt wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 672-681. | |
8 | Oren Y. Capacitive delonization (CDI) for desalination and water treatment—past, present and future (a review)[J]. Desalination, 2008, 228(1/2/3): 10-29. |
9 | Anderson M A, Cudero A L, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?[J]. Electrochimica Acta, 2010, 55(12): 3845-3856. |
10 | Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. |
11 | Tang K, Hong T Z X, You L, et al. Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications[J]. Journal of Materials Chemistry A, 2019, 7(47): 26693-26743. |
12 | Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
13 | Zhu G, Wang W, Li X, et al. Design and fabrication of a graphene/carbon nanotubes/activated carbon hybrid and its application for capacitive deionization[J]. RSC Advances, 2016, 6(7): 5817-5823. |
14 | Gabelich C J, Tran T D, Suffet I H. Electrosorption of inorganic salts from aqueous solution using carbon aerogels[J]. Environmental Science & Technology, 2002, 36(13): 3010-3019. |
15 | Xu P, Drewes J E, Heil D, et al. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology[J]. Water Research, 2008, 42(10/11): 2605-2617. |
16 | Zou L, Morris G, Qi D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination, 2008, 225(1/2/3): 329-340. |
17 | Li Y, Liu Y, Shen J, et al. Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization[J]. Desalination, 2018, 430: 45-55. |
18 | Li Y, Liu Y, Wang M, et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization[J]. Carbon, 2018, 130: 377-383. |
19 | Wang C, Liu C, Li J, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors[J]. Chemical Communications, 2017, 53(10): 1751-1754. |
20 | Wang M, Xu X, Tang J, et al. High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches[J]. Chemical Communications, 2017, 53(78): 10784-10787. |
21 | Gao T, Zhou F, Ma W, et al. Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization[J]. Electrochimica Acta, 2018, 263: 85-93. |
22 | Shen J, Li Y, Wang C, et al. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J]. Electrochimica Acta, 2018, 273: 34-42. |
23 | Ding M, Shi W, Guo L, et al. Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination[J]. Journal of Materials Chemistry A, 2017, 5(13): 6113-6121. |
24 | Wang Z, Yan T, Fang J, et al. Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors[J]. Journal of Materials Chemistry A, 2016, 4(28): 10858-10868. |
25 | Xu X, Wang M, Liu Y, et al. Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(15): 5467-5473. |
26 | Zhang J, Fang J, Han J, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6(31): 15245-15252. |
27 | Wang C, Kaneti Y V, Bando Y, et al. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion[J]. Materials Horizons, 2018, 5(3): 394-407. |
28 | Li Y, Kim J, Wang J, et al. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity[J]. Nanoscale, 2018, 10(31): 14852-14859. |
29 | Wang G, Dong Q, Ling Z, et al. Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization[J]. Journal of Materials Chemistry, 2012, 22(41): 21819-21823. |
30 | Wang G, Dong Q, Wu T T, et al. Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: importance and unique role of electrical conductivity[J]. Carbon, 2016, 103: 311-317. |
31 | Liu L, Liao L, Meng Q, et al. High performance graphene composite microsphere electrodes for capacitive deionisation[J]. Carbon, 2015, 90: 75-84. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[12] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||