CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2599-2611.DOI: 10.11949/0438-1157.20200230
• Reviews and monographs • Previous Articles Next Articles
Wang YANG(),Yun LI,Xiaojuan TIAN,Fan YANG,Yongfeng LI()
Received:
2020-03-04
Revised:
2020-04-07
Online:
2020-06-05
Published:
2020-06-05
Contact:
Yongfeng LI
通讯作者:
李永峰
作者简介:
杨旺(1989—),男,博士,讲师,基金资助:
CLC Number:
Wang YANG, Yun LI, Xiaojuan TIAN, Fan YANG, Yongfeng LI. Research progress of strengthening methods in graphene preparation by supercritical CO2 exfoliation[J]. CIESC Journal, 2020, 71(6): 2599-2611.
杨旺, 李云, 田晓娟, 杨帆, 李永峰. 超临界CO2剥离法制备石墨烯的过程强化研究[J]. 化工学报, 2020, 71(6): 2599-2611.
1 | Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. |
2 | Novoselov K S, Geim A K. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
3 | Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. |
4 | Yu X, Cheng H, Zhang M, et al. Graphene-based smart materials[J]. Nature Reviews Materials, 2017, 2(9): 1-13. |
5 | Torres T. Graphene chemistry[J]. Chemical Society Reviews, 2017, 46(15): 4385-4386. |
6 | Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene[J]. Applied Physics Letters, 2007, 91(16): 163513. |
7 | Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
8 | Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in graphene[J]. Science, 2007, 315(5817): 1379-1379. |
9 | Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 2011, 11(6): 2396-2399. |
10 | Yankowitz M, Chen S, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene[J]. Science, 2019, 363(6431): 1059-1064. |
11 | 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894. |
He D F, Wu J, Liu Z J, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894. | |
12 | Chen X, Zhang L, Chen S. Large area CVD growth of graphene[J]. Synthetic Metals, 2015, 210: 95-108. |
13 | Yan K A I, Fu L E I, Peng H, et al. Designed CVD growth of graphene via process engineering[J]. Accounts of Chemical Research, 2013, 46(10): 2263-2274. |
14 | Zhang Y I, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339. |
15 | Mishra N, Boeckl J, Motta N, et al. Graphene growth on silicon carbide: a review[J]. Physica Status Solidi (a), 2016, 213(9): 2277-2289. |
16 | Virojanadara C, Syväjarvi M, Yakimova R, et al. Homogeneous large-area graphene layer growth on 6 H-SiC (0001)[J]. Physical Review B, 2008, 78(24): 245403. |
17 | Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339. |
18 | Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. |
19 | Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624. |
20 | Li L, Xu J, Li G, et al. Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation[J]. Chemical Engineering Journal, 2016, 284: 78-84. |
21 | Zhang X, Heinonen S, Levänen E. Applications of supercritical carbon dioxide in materials processing and synthesis[J]. RSC Advances, 2014, 4(105): 61137-61152. |
22 | Sun Z, Fan Q, Zhang M, et al. Supercritical fluid-facilitated exfoliation and processing of 2D materials[J]. Advanced Science, 2019, 6(18): 1901084. |
23 | Doustkhah E, Farajzadeh M, Mohtasham H, et al. Exfoliated graphene-based 2D materials: synthesis and catalytic behaviors[J]. Handbook of Graphene Set, 2019, 1: 529-558. |
24 | Zhang Y, Small J P, Pontius W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J]. Applied Physics Letters, 2005, 86(7): 073104-073106. |
25 | de Andres P L, Ramírez R, Vergés J A. Strong covalent bonding between two graphene layers[J]. Physical Review B, 2008, 77(4): 045403. |
26 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
27 | Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. |
28 | Kiran E. Supercritical fluids and polymers-the year in review-2014[J]. The Journal of Supercritical Fluids, 2016, 110: 126-153. |
29 | Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing[J]. Nature, 1996, 383(6598): 313. |
30 | Adschiri T, Yoko A. Supercritical fluids for nanotechnology[J]. The Journal of Supercritical Fluids, 2018, 134: 167-175. |
31 | 胡玉婷. 在超临界二氧化碳体系中石墨烯剥离技术的研究[D]. 济南: 山东大学, 2014. |
Hu Y T. The study in the exfoliation of graphene in supercritical carbon dioxide system [D]. Jinan: Shandong University, 2014. | |
32 | Khan U, Porwal H, Neill A O, et al. Solvent-exfoliated graphene at extremely high concentration[J]. Langmuir, 2011, 27(15): 9077-9082. |
33 | Li L, Zheng X, Wang J, et al. Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 144-151. |
34 | Li L, Zhang J, Liu Y, et al. Facile fabrication of Pt nanoparticles on 1-pyrenamine functionalized graphene nanosheets for methanol electrooxidation[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 527-533. |
35 | Rangappa D, Sone K, Wang M, et al. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chemistry-A European Journal, 2010, 16(22): 6488-6494. |
36 | Liu C, Hu G, Gao H. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide[J]. The Journal of Supercritical Fluids, 2012, 63: 99-104. |
37 | Jang J H, Rangappa D, Kwon Y U, et al. Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties[J]. Journal of Materials Chemistry, 2011, 21(10): 3462-3466. |
38 | Hadi A, Karimi-Sabet J, Moosavian S M A, et al. Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach[J]. The Journal of Supercritical Fluids, 2016, 107: 92-105. |
39 | Padmajan S S, Poulin P, Aymonier C. Prospects of supercritical fluids in realizing graphene-based functional materials[J]. Advanced Materials, 2016, 28(14): 2663-2691. |
40 | Pu N W, Wang C A, Sung Y, et al. Production of few-layer graphene by supercritical CO2 exfoliation of graphite[J]. Materials Letters, 2009, 63(23): 1987-1989. |
41 | Sim H S, Kim T A, Lee K H, et al. Preparation of graphene nanosheets through repeated supercritical carbon dioxide process[J]. Materials Letters, 2012, 89: 343-346. |
42 | Gomez-Ballesteros J L, Callejas-Tovar A, Coelho L A F, et al. Molecular dynamics studies of graphite exfoliation using supercritical CO2[M]//Design and Applications of Nanomaterials for Sensors. Dordrecht: Springer, 2014: 171-183. |
43 | Wu B, Yang X. A molecular simulation of interactions between graphene nanosheets and supercritical CO2[J]. Journal of Colloid and Interface Science, 2011, 361(1): 1-8. |
44 | Wang Y, Chen Z, Wu Z, et al. High-efficiency production of graphene by supercritical CO2 exfoliation with rapid expansion[J]. Langmuir, 2018, 34(26): 7797-7804. |
45 | Pershin V F, Krasnyanskiy M N, Alhilo Z A A, et al. Production of few-layer and multilayer graphene by shearing exfoliation of graphite in liquids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, (6931): 012023. |
46 | Amiri A, Naraghi M, Ahmadi G, et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges[J]. Flat Chem., 2018, 8: 40-71. |
47 | 李磊, 李耿辉, 李永峰, 等. 流体剪切辅助超临界CO2技术制备石墨烯[J]. 科学通报, 2015, 60(26): 2561-2566. |
Li L, Li G H, Li Y F, et al. Preparation of graphene from graphite by supercritical CO2 exfoliation assisted with fluid shear[J]. Chinese Science Bulletin, 2015, 60(26): 2561-2566. | |
48 | Song N, Jia J, Wang W, et al. Green production of pristine graphene using fluid dynamic force in supercritical CO2[J]. Chemical Engineering Journal, 2016, 298: 198-205. |
49 | Gai Y, Wang W, Xiao D, et al. Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2: experiment and simulation[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8220-8229. |
50 | Shang T, Feng G, Li Q, et al. Production of graphene nanosheets by supercritical CO2 process coupled with micro-jet exfoliation[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(12): 691-698. |
51 | Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling[J]. Proceedings of the National Academy of Sciences, 2012, 109(15): 5588-5593. |
52 | 陈庆, 孙丽枝, 曾军堂. 机械法剪切剥离制备石墨烯的研究现状和发展趋势[J]. 新材料产业, 2016, (10): 43-47. |
Chen Q, Sun L Z, Cen J T. Research status and development trend of mechanically processed shear stripping to prepare graphene[J]. Advanced Materials Industry,2016, (10): 43-47. | |
53 | Chen J, Duan M, Chen G. Continuous mechanical exfoliation of graphene sheets via three-roll mill[J]. Journal of Materials Chemistry, 2012, 22(37): 19625-19628. |
54 | Zhao W, Fang M, Wu F, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. Journal of Materials Chemistry, 2010, 20(28): 5817-5819. |
55 | Zhao W, Wu F, Wu H, et al. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling[J]. Journal of Nanomaterials, 2010, 10(6):1-5. |
56 | Aparna R, Sivakumar N, Balakrishnan A, et al. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants[J]. Journal of Renewable and Sustainable Energy, 2013, 5(3): 033123. |
57 | Chen Z, Miao H, Wu J, et al. Scalable production of hydrophilic graphene nanosheets via in situ ball-milling-assisted supercritical CO2 exfoliation[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 6939-6944. |
58 | Tao H, Zhang Y, Gao Y, et al. Scalable exfoliation and dispersion of two-dimensional materials—an update[J]. Physical Chemistry Chemical Physics, 2017, 19(2): 921-960. |
59 | Notley S M. Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition[J]. Langmuir, 2012, 28(40): 14110-14113. |
60 | 刘霞, 黄平, 江莞. 超声剥离法制备石墨烯纳米片[J]. 中国科技论文, 2016, 11(10): 1184-1187. |
Liu X, Huang P, Jiang W. Preparation of graphene nanosheets by ultrasonic stripping method[J]. China Science Paper, 2016, 11(10): 1184-1187. | |
61 | Krishnamoorthy K, Kim G S, Kim S J. Graphene nanosheets: ultrasound assisted synthesis and characterization[J]. Ultrasonics Sonochemistry, 2013, 20(2): 644-649. |
62 | Wang W, Wang Y, Gao Y, et al. Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium-ion batteries[J]. The Journal of Supercritical Fluids, 2014, 85: 95-101. |
63 | Gao Y, Shi W, Wang W, et al. Ultrasonic-assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2839-2845. |
64 | Gai Y, Wang W, Xiao D, et al. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: simulation and experiment[J]. Ultrasonics Sonochemistry, 2018, 41: 181-188. |
65 | Gao H, Zhu K, Hu G, et al. Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium[J]. Chemical Engineering Journal, 2017, 308: 872-879. |
66 | Adel M, Abdel-Karim R, Abdelmoneim A. Studying the conversion of graphite into nanographene sheets using supercritical phase exfoliation method[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(7): 589-602. |
67 | Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials[J]. Chemistry-A European Journal, 2010, 16(18): 5246-5259. |
68 | Wang W, Gai Y, Song N, et al. Highly efficient production of graphene by an ultrasound coupled with a shear mixer in supercritical CO2[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16701-16708. |
69 | Zheng X, Xu Q, Li J, et al. High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers[J]. RSC Advances, 2012, 2(28): 10632-10638. |
70 | Mann J A, Rodríguez-López J, Abruña H D, et al. Multivalent binding motifs for the noncovalent functionalization of graphene[J]. Journal of the American Chemical Society, 2011, 133(44): 17614-17617. |
71 | Lee D W, Kim T, Lee M. An amphiphilic pyrene sheet for selective functionalization of graphene[J]. Chemical Communications, 2011, 47(29): 8259-8261. |
72 | Knieke C, Berger A, Voigt M, et al. Scalable production of graphene sheets by mechanical delamination[J]. Carbon, 2010, 48(11): 3196-3204. |
73 | Li L, Zheng X, Wang J, et al. Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 144-151. |
74 | Xu S, Xu Q, Wang N, et al. Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2[J]. Chemistry of Materials, 2015, 27(9): 3262-3272 |
75 | Xu Q Q, Zhao W, Zhi J T, et al. Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing[J]. Carbon, 2018, 135: 180-186. |
76 | Rokuta E, Hasegawa Y, Suzuki K, et al. Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni (111)[J]. Physical Review Letters, 1997, 79(23): 4609-4612. |
77 | Zhi C, Bando Y, Tang C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Advanced Materials, 2009, 21(28): 2889-2893. |
78 | Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. |
79 | Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700. |
80 | Ramakrishna M H S S, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. |
81 | Tian X, Wu J, Li Q, et al. Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide[J]. Journal of Materials Science, 2018, 53(10): 7258-7265. |
82 | Tian X, Li Y, Chen Z, et al. Shear-assisted production of few-layer boron nitride nanosheets by supercritical CO2 exfoliation and its use for thermally conductive epoxy composites[J]. Scientific Reports, 2017, 7(1): 1-9. |
83 | Wang Y, Zhou C, Wang W, et al. Preparation of two-dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound[J]. Industrial & Engineering Chemistry Research, 2013, 52(11): 4379-4382. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[10] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 340
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||