CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2586-2598.DOI: 10.11949/0438-1157.20200226
• Reviews and monographs • Previous Articles Next Articles
Xidong LIN(),Youchen TANG,Quanfei SU,Shaohong LIU(),Dingcai WU
Received:
2020-03-04
Revised:
2020-04-09
Online:
2020-06-05
Published:
2020-06-05
Contact:
Shaohong LIU
通讯作者:
刘绍鸿
作者简介:
林羲栋(1991—),男,博士研究生,基金资助:
CLC Number:
Xidong LIN, Youchen TANG, Quanfei SU, Shaohong LIU, Dingcai WU. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications[J]. CIESC Journal, 2020, 71(6): 2586-2598.
林羲栋, 唐友臣, 苏权飞, 刘绍鸿, 吴丁财. 层次孔碳材料:结构设计、功能改性及新能源器件应用[J]. 化工学报, 2020, 71(6): 2586-2598.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 Schematic illustration of the fabrication of multichamber carbon (MCC) (a); N2 adsorption-desorption isotherms of MCC-N and MCC-xH (b); Specific capacitances at different current densities for MCC-xH and MCC-N (c) [65]
Fig.9 Electron microscopy images of SA-Fe-HPC[(a),(b)]; the linear sweep voltammetry curves of SA-Fe-HPC in 0.1 mol·L-1 KOH (c)and 0.1 mol·L-1 H2SO4 (d) [71]
1 | Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries[J]. Adv. Mater., 2009, 21(45): 4593-4607. |
2 | Zhang Q, Uchaker E, Candelaria S L, et al. Nanomaterials for energy conversion and storage[J]. Chem. Soc. Rev., 2013, 42(7): 3127-3171. |
3 | Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 2009, 38(9): 2520-2531. |
4 | Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy Environ. Sci., 2014, 7(11): 3574-3592. |
5 | Liu T Y, Zhang F, Song Y, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J]. J. Mater. Chem. A, 2017, 5(34): 17705-17733. |
6 | Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2008, 47(2): 373-376. |
7 | Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: functional evolution and performance improvement[J]. Energy Storage Mater., 2016, 2: 76-106. |
8 | Liang H W, Zhuang X, Bruller S, et al. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction[J]. Nat. Commun., 2014, 5: 4973. |
9 | Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Adv. Mater., 2006, 18(16): 2073-2094. |
10 | Wu D C, Xu F, Sun B, et al. Design and preparation of porous polymers[J]. Chem. Rev., 2012, 112(7): 3959-4015. |
11 | 钟玲, 唐城, 王斌, 等. SAPO-34模板法制备多级孔石墨烯笼用作双功能氧还原/氧析出电催化剂[J]. 新型炭材料, 2017, 32(6): 509-516. |
Zhong L, Tang C, Wang B, et al. SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution[J]. New Carbon Mater., 2017, 32(6): 509-516. | |
12 | Wu R, Chen S G, Deng J H, et al. Hierarchically porous nitrogen-doped carbon as cathode for lithium-sulfur batteries[J]. J. Energy Chem., 2018, 27(6): 1661-1667. |
13 | Huang X D, Qian K, Yang J, et al. Functional nanoporous graphene foams with controlled pore sizes[J]. Adv. Mater., 2012, 24(32): 4419-4423. |
14 | Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213. |
15 | Wu D C, Dong H C, Pietrasik J, et al. Novel nanoporous carbons from well-defined poly(styrene-co-acrylonitrile)-grafted silica nanoparticles[J]. Chem. Mater., 2011, 23(8): 2024-2026. |
16 | Kang S, Yu J S, Kruk M, et al. Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties[J]. Chem. Commun., 2002, (16): 1670-1671. |
17 | Yu J S, Kang S, Yoon S B, et al. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter[J]. J. Am. Chem. Soc., 2002, 124(32): 9382-9383. |
18 | Taguchi A, Smått J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity[J]. Adv. Mater., 2003, 15(14): 1209-1211. |
19 | Huang H J, Xu R, Feng Y Z, et al. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering[J]. Adv. Mater., 2020, 32(8): 1904320. |
20 | Gao F, Qu J Y, Geng C, et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors[J]. J. Mater. Chem. A, 2016, 4(19): 7445-7452. |
21 | Zhu S, Li J J, He C N, et al. Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors[J]. J. Mater. Chem. A, 2015, 3(44): 22266-22273. |
22 | Wang C, Connell M J O, Chan C K. Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis[J]. ACS Appl. Mater. Interfaces, 2015, 7(16): 8952-8960. |
23 | Li B Q, Cheng Y F, Dong L P, et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors[J]. Carbon, 2017, 122: 592-603. |
24 | Luo H M, Yang Y F, Mu B, et al. Facile synthesis of microporous carbon for supercapacitors with a LiNO3 electrolyte[J]. Carbon, 2016, 100: 214-222. |
25 | Sun B, Kretschmer K, Xie X Q, et al. Hierarchical porous carbon spheres for high-performance Na-O2 batteries[J]. Adv. Mater., 2017, 29(48): 1606816. |
26 | Estevez L, Dua R, Bhandari N, et al. A facile approach for the synthesis of monolithic hierarchical porous carbons-high performance materials for amine based CO2 capture and supercapacitor electrode[J]. Energy Environ. Sci., 2013, 6(6): 1785-1790. |
27 | Li Y S, Shi J L. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications[J]. Adv. Mater., 2014, 26(20): 3176-3205. |
28 | Liang C D, Li Z J, Dai S. Mesoporous carbon materials: synthesis and modification[J]. Angew. Chem. Int. Ed., 2008, 47(20): 3696-3717. |
29 | Nong J, Zhu M, He K, et al. N/S co-doped 3D carbon framework prepared by a facile morphology-controlled solid-state pyrolysis method for oxygen reduction reaction in both acidic and alkaline media[J]. J. Energy Chem., 2019, 34: 220-226. |
30 | Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chem. Mater., 2006, 18(18): 4447-4464. |
31 | Fang Y, Lv Y Y, Gong F, et al. Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries[J]. Adv. Mater., 2016, 28(42): 9385-9390. |
32 | Liu R L, Wan L, Liu S Q, et al. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors[J]. Adv. Funct. Mater., 2015, 25(4): 526-533. |
33 | Xue C F, Tu B, Zhao D Y. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly[J]. Nano Research, 2009, 2(3): 242-253. |
34 | Deng Y H, Liu C, Yu T, et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J]. Chem. Mater., 2007, 19(13): 3271-3277. |
35 | Liang C D, Dai S. Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths[J]. Chem. Mater., 2009, 21(10): 2115-2124. |
36 | Peng H R, Yao B, Wei X J, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Adv. Energy Mater., 2019, 9(19): 1803665. |
37 | Wu D C, Li Z H, Zhong M J, et al. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP[J]. Angew. Chem. Int. Ed., 2014, 53(15): 3957-3960. |
38 | Li Z H, Wu D C, Huang X, et al. Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking[J]. Energy Environ. Sci., 2014, 7(9): 3006-3012. |
39 | Tang Z W, Liu S H, Lu Z T, et al. A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances[J]. Chem. Commun., 2017, 53(50): 6764-6767. |
40 | 杨杰, 浦群, 包永忠. 基于偏氯乙烯嵌段共聚物的多级多孔炭的制备[J]. 化工学报, 2014, 65(1): 358-364. |
Yang J, Pu Q, Bao Y Z. Preparation of hierarchical porous carbons from vinylidene chloride-based block copolymers[J]. CIESC Journal, 2014, 65(1): 358-364. | |
41 | Liang Y R, Wu D C, Fu R W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer[J]. Sci. Rep., 2013, 3: 1119. |
42 | Lin X D, Liang Y R, Lu Z T, et al. Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials[J]. ACS Sustain. Chem. Eng., 2017, 5(10): 8535-8540. |
43 | Zhang Y, Liu S S, Zheng X Y, et al. Biomass organs control the porosity of their pyrolyzed carbon[J]. Adv. Funct. Mater., 2017, 27(3): 1604687. |
44 | Raymundo-Piñero E, Cadek M, Béguin F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Adv. Funct. Mater., 2009, 19(7): 1032-1039. |
45 | Wu X L, Wen T, Guo H L, et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors[J]. ACS Nano, 2013, 7(4): 3589-3597. |
46 | Li Z J, Lv W, Zhang C, et al. A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant[J]. Carbon, 2015, 92: 11-14. |
47 | Wu D C, Fu R W, Zhang S T, et al. Preparation of low-density carbon aerogels by ambient pressure drying[J]. Carbon, 2004, 42(10): 2033-2039. |
48 | Wu D C, Fu R W, Dresselhaus M S, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method[J]. Carbon, 2006, 44(4): 675-681. |
49 | Li Z H, Wu D C, Liang Y R, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. J. Am. Chem. Soc., 2014, 136(13): 4805-4808. |
50 | Wu D C, Nese A, Pietrasik J, et al. Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes[J]. ACS Nano, 2012, 6(7): 6208-6214. |
51 | Lin X D, Xie G J, Liu S H, et al. Fabrication of porous nanonetwork-structured carbons from well-defined cylindrical molecular bottlebrushes[J]. ACS Appl. Mater. Interfaces, 2019, 11(20): 18763-18769. |
52 | Xie G J, Lin X D, Martinez M R, et al. Fabrication of porous functional nanonetwork-structured polymers with enhanced adsorption performance from well-defined molecular brush building blocks[J]. Chem. Mater., 2018, 30(23): 8624-8629. |
53 | Xu F, Xu J, Xu H J, et al. Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage[J]. Energy Storage Mater., 2017, 7: 8-16. |
54 | Lin X D, Lou H, Lu W R, et al. High-performance organic electrolyte supercapacitors based on intrinsically powdery carbon aerogels[J]. Chinese Chem. Lett., 2018, 29(4): 633-636. |
55 | 蔡力锋, 许静, 黄剑瑜, 等. 粉末状炭气凝胶的结构调控及其在高电压水系超级电容器中的应用[J]. 新型炭材料, 2017, 32(6): 550-556. |
Cai L F, Xu J, Huang J Y, et al. Structure control of powdery carbon aerogels and their use in high-voltage aqueous supercapacitors[J]. New Carbon Mater., 2017, 32(6): 550-556. | |
56 | Zheng J, Huang J L, Xu F, et al. Powdery polymer and carbon aerogels with high surface areas for high-performance solid phase microextraction coatings[J]. Nanoscale, 2017, 9(17): 5545-5550. |
57 | Liu H, Li S M, Yang H Y, et al. Stepwise crosslinking: a facile yet versatile conceptual strategy to nanomorphology-persistent porous organic polymers[J]. Adv. Mater., 2017, 29(27): 1700723. |
58 | Xia W, Mahmood A, Zou R Q, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energ. Environ. Sci., 2015, 8(7): 1837-1866. |
59 | Cao X H, Tan C L, Sindoro M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev., 2017, 46(10): 2660-2677. |
60 | Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. J. Am. Chem. Soc., 2008, 130(16): 5390-5391. |
61 | Zou L L, Kitta M, Hong J H, et al. Fabrication of a spherical superstructure of carbon nanorods[J]. Adv. Mater., 2019, 31(24): 1900440. |
62 | Xia B Y, Yan Y, Li N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nat. Energy, 2016, 1(1): 15006. |
63 | Meng J S, Niu C J, Xu L H, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. J. Am. Chem. Soc., 2017, 139(24): 8212-8221. |
64 | Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. |
65 | Wang T, Sun Y, Zhang L L, et al. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures[J]. Adv. Mater., 2019, 31(16): 1807876. |
66 | Xu D F, Chen C J, Xie J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Adv. Energy Mater., 2016, 6(6): 1501929. |
67 | Pan F P, Duan Y X, Liang A M, et al. Facile integration of hierarchical pores and N, P-codoping in carbon networks enables efficient oxygen reduction reaction[J]. Electrochim. Acta, 2017, 238: 375-383. |
68 | Liu Y, Dai H D, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries[J]. Adv. Energy Mater., 2019, 9(34): 1901379. |
69 | Liu S H, Wang Z Y, Zhou S, et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Adv. Mater., 2017, 29(31): 1700874. |
70 | Liu S H, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(12): 1706895. |
71 | Zhang Z P, Sun J T, Wang F, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework[J]. Angew. Chem. Int. Ed., 2018, 57(29): 9038-9043. |
72 | Zhang Z Q, Chen Y G, Zhou L Q, et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring[J]. Nat. Commun., 2019, 10(1): 1657. |
73 | Tang C, Wang B, Wang H F, et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Adv. Mater., 2017, 29(37): 1703185. |
74 | Xie J, Li B Q, Peng H J, et al. From supramolecular species to self-templated porous carbon and metal-doped carbon for oxygen reduction reaction catalysts[J]. Angew. Chem. Int. Ed., 2019, 58(15): 4963-4967. |
75 | Han F, Ma L J, Sun Q, et al. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries[J]. Nano Research, 2014, 7(11): 1706-1717. |
76 | Li D H, Yang D J, Yang X F, et al. Double-helix structure in carrageenan-metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage[J]. Angew. Chem. Int. Ed., 2016, 55(51): 15925-15928. |
77 | Peng Z Y, Hu Y J, Wang J J, et al. Fullerene-based in situ doping of N and Fe into a 3D cross-like hierarchical carbon composite for high-performance supercapacitors[J]. Adv. Energy Mater., 2019, 9(11): 1802928. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[7] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[8] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[9] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[12] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[13] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[14] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[15] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||