CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4720-4732.DOI: 10.11949/0438-1157.20200698
• Process system engineering • Previous Articles Next Articles
Lu YANG(),Shuoshi LIU,Xiaoyan LUO,Siyu YANG,Yu QIAN()
Received:
2020-06-03
Revised:
2020-07-09
Online:
2020-10-05
Published:
2020-10-05
Contact:
Yu QIAN
通讯作者:
钱宇
作者简介:
杨路(1996—),男,硕士研究生,基金资助:
CLC Number:
Lu YANG, Shuoshi LIU, Xiaoyan LUO, Siyu YANG, Yu QIAN. Multi-objective operation optimization of olefin separation process for MTO plant[J]. CIESC Journal, 2020, 71(10): 4720-4732.
杨路, 刘硕士, 罗小艳, 杨思宇, 钱宇. MTO烯烃分离过程的多目标操作优化[J]. 化工学报, 2020, 71(10): 4720-4732.
Add to citation manager EndNote|Ris|BibTeX
塔名称 | 压力/MPa(G) | 塔顶/塔底温度/℃ |
---|---|---|
DP1 | 1.85 | 15.8/80 |
DP2 | 0.77 | 14.4/79.2 |
DM | 2.65 | -11.1/13.8 |
DE | 2.40 | -20.4/62.7 |
ET | 1.64 | -34.3/-11.6 |
PT2 | 1.94 | 51.9/59.1 |
PT1 | 1.80 | 45.8/51.8 |
DB | 0.37 | 46.8/92.6 |
Table 1 Operating parameters of olefin separation process
塔名称 | 压力/MPa(G) | 塔顶/塔底温度/℃ |
---|---|---|
DP1 | 1.85 | 15.8/80 |
DP2 | 0.77 | 14.4/79.2 |
DM | 2.65 | -11.1/13.8 |
DE | 2.40 | -20.4/62.7 |
ET | 1.64 | -34.3/-11.6 |
PT2 | 1.94 | 51.9/59.1 |
PT1 | 1.80 | 45.8/51.8 |
DB | 0.37 | 46.8/92.6 |
Stream | Temperature/ ℃ | Pressure/ MPa(G) | Mass flow/ (t/h) | Mole flows/(kmol/h) | Mole fraction/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2,N2,CO | CH4 | C2H6 | C2H4 | C3H8 | C3H6 | C4H10 | C4H8 | C4H6 | C5 | CH3OCH3 | |||||
feed 1① | 12.2 | 2.139 | 47.89 | 1190 | 0.35 | 0.41 | 0.71 | 33.27 | 3.02 | 45.12 | 0.54 | 12.57 | 0.31 | 3.64 | 0.05 |
feed 2① | 11.5 | 1.87 | 49.12 | 1638 | 5.85 | 6.26 | 1.04 | 60.8 | 1.47 | 22.77 | 0.08 | 1.55 | 0.04 | 0.13 | 0.02 |
1 | -34.1 | 1.641 | 38.52 | 1373 | trace | 0.01 | 0.04 | 99.95 | 0 | trace | 0 | 0 | 0 | 0 | 0 |
2 | 46 | 1.803 | 38 | 903 | 0 | trace | 0.02 | 0 | 0.35 | 99.64 | 0 | 0 | 0 | 0 | 0 |
3 | 40.1 | 0.369 | 10.5 | 188 | 0 | 0 | 0 | 0 | 0.1 | 0.15 | 4.08 | 92.85 | 2.25 | 0.5 | 0.07 |
4 | 89.2 | 0.407 | 3.37 | 48 | 0 | 0 | 0 | 0 | 0 | 1×10-12 | 0.01 | 0.62 | 0 | 99.37 | 0 |
1① | -34.2 | 1.641 | 38.52 | 1373 | 0 | 0.01 | 0.04 | 99.95 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2① | 45.8 | 1.803 | 38 | 903 | 0 | 0 | 0.02 | 0 | 0.35 | 99.63 | 0 | 0 | 0 | 0 | 0 |
3① | 39.6 | 0.369 | 10.5 | 188 | 0 | 0 | 0 | 0 | 0.1 | 0.15 | 4.09 | 92.87 | 2.24 | 0.5 | 0.07 |
4① | 92.6 | 0.407 | 3.37 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.62 | 0 | 99.37 | 0 |
Table 2 Material balance of olefin separation process
Stream | Temperature/ ℃ | Pressure/ MPa(G) | Mass flow/ (t/h) | Mole flows/(kmol/h) | Mole fraction/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2,N2,CO | CH4 | C2H6 | C2H4 | C3H8 | C3H6 | C4H10 | C4H8 | C4H6 | C5 | CH3OCH3 | |||||
feed 1① | 12.2 | 2.139 | 47.89 | 1190 | 0.35 | 0.41 | 0.71 | 33.27 | 3.02 | 45.12 | 0.54 | 12.57 | 0.31 | 3.64 | 0.05 |
feed 2① | 11.5 | 1.87 | 49.12 | 1638 | 5.85 | 6.26 | 1.04 | 60.8 | 1.47 | 22.77 | 0.08 | 1.55 | 0.04 | 0.13 | 0.02 |
1 | -34.1 | 1.641 | 38.52 | 1373 | trace | 0.01 | 0.04 | 99.95 | 0 | trace | 0 | 0 | 0 | 0 | 0 |
2 | 46 | 1.803 | 38 | 903 | 0 | trace | 0.02 | 0 | 0.35 | 99.64 | 0 | 0 | 0 | 0 | 0 |
3 | 40.1 | 0.369 | 10.5 | 188 | 0 | 0 | 0 | 0 | 0.1 | 0.15 | 4.08 | 92.85 | 2.25 | 0.5 | 0.07 |
4 | 89.2 | 0.407 | 3.37 | 48 | 0 | 0 | 0 | 0 | 0 | 1×10-12 | 0.01 | 0.62 | 0 | 99.37 | 0 |
1① | -34.2 | 1.641 | 38.52 | 1373 | 0 | 0.01 | 0.04 | 99.95 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2① | 45.8 | 1.803 | 38 | 903 | 0 | 0 | 0.02 | 0 | 0.35 | 99.63 | 0 | 0 | 0 | 0 | 0 |
3① | 39.6 | 0.369 | 10.5 | 188 | 0 | 0 | 0 | 0 | 0.1 | 0.15 | 4.09 | 92.87 | 2.24 | 0.5 | 0.07 |
4① | 92.6 | 0.407 | 3.37 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.62 | 0 | 99.37 | 0 |
符号 | 变量 | 下限 | 上限 |
---|---|---|---|
x1 | 高压脱丙烷塔(DP1)塔顶采出量, kg/h | 101000 | 105000 |
x2 | 高压脱丙烷塔(DP1)回流比 | 1.18 | 1.23 |
x3 | 低压脱丙烷塔(DP2)回流比 | 1.0 | 1.4 |
x4 | 低压脱丙烷塔(DP2)塔顶采出量, kg/h | 7600 | 8240 |
x5 | 脱丁烷塔(DB)回流比 | 0.95 | 1.2 |
x6 | 脱丁烷塔(DB)塔顶采出量, kg/h | 10200 | 10700 |
x7 | 脱甲烷塔(DM)塔顶采出量, kg/h | 4150 | 4350 |
x8 | 脱甲烷塔(DM)丙烷流量, kg/h | 16200 | 17400 |
x9 | 脱乙烷塔(DE)回流比 | 1.3 | 1.6 |
x10 | 脱乙烷塔(DE)塔顶采出量, kg/h | 40000 | 43000 |
x11 | 乙烯塔(ET)塔顶采出量, kg/h | 143000 | 147000 |
x12 | 乙烯塔(ET)中间测线采出量, kg/h | 37000 | 40000 |
x13 | 2#丙烯塔(PT2)塔顶采出量, kg/h | 524000 | 536000 |
x14 | 1#丙烯塔(PT1)塔顶采出量, kg/h | 37350 | 39000 |
x15 | 1#丙烯塔(PT1)回流比 | 14.0 | 18.0 |
Table 3 Optimization variables and their constraints of olefin separation process
符号 | 变量 | 下限 | 上限 |
---|---|---|---|
x1 | 高压脱丙烷塔(DP1)塔顶采出量, kg/h | 101000 | 105000 |
x2 | 高压脱丙烷塔(DP1)回流比 | 1.18 | 1.23 |
x3 | 低压脱丙烷塔(DP2)回流比 | 1.0 | 1.4 |
x4 | 低压脱丙烷塔(DP2)塔顶采出量, kg/h | 7600 | 8240 |
x5 | 脱丁烷塔(DB)回流比 | 0.95 | 1.2 |
x6 | 脱丁烷塔(DB)塔顶采出量, kg/h | 10200 | 10700 |
x7 | 脱甲烷塔(DM)塔顶采出量, kg/h | 4150 | 4350 |
x8 | 脱甲烷塔(DM)丙烷流量, kg/h | 16200 | 17400 |
x9 | 脱乙烷塔(DE)回流比 | 1.3 | 1.6 |
x10 | 脱乙烷塔(DE)塔顶采出量, kg/h | 40000 | 43000 |
x11 | 乙烯塔(ET)塔顶采出量, kg/h | 143000 | 147000 |
x12 | 乙烯塔(ET)中间测线采出量, kg/h | 37000 | 40000 |
x13 | 2#丙烯塔(PT2)塔顶采出量, kg/h | 524000 | 536000 |
x14 | 1#丙烯塔(PT1)塔顶采出量, kg/h | 37350 | 39000 |
x15 | 1#丙烯塔(PT1)回流比 | 14.0 | 18.0 |
符号 | 变量 | A (150.49 MW, 33.59%) | B (155.22 MW, 34.44%) | QP (153.42 MW, 34.23%) | Q* (174 MW, 34.15%) | QP与Q* 偏差% |
---|---|---|---|---|---|---|
x1 | DP1塔顶采出量, kg/h | 101220 | 101860 | 101740 | 104450 | -2.6 |
x2 | DP1回流比 | 1.219 | 1.219 | 1.219 | 1.219 | 0 |
x3 | DP2回流比 | 1.332 | 1.000 | 1.024 | 1.203 | -14.8 |
x4 | DP2塔顶采出量, kg/h | 7680 | 8160 | 8070 | 7960 | +1.5 |
x5 | DB回流比 | 1.038 | 0.962 | 0.954 | 0.988 | -3.3 |
x6 | DB塔顶采出量, kg/h | 10370 | 10280 | 10280 | 10500 | -2.1 |
x7 | DM塔顶采出量, kg/h | 4240 | 4225 | 4225 | 4255 | -0.7 |
x8 | DM丙烷流量, kg/h | 17000 | 16360 | 16330 | 16940 | -3.6 |
x9 | DE回流比 | 1.30 | 1.37 | 1.41 | 1.50 | -6.7 |
x10 | DE塔顶采出量, kg/h | 41800 | 40890 | 40790 | 40580 | +0.5 |
x11 | ET塔顶采出量, kg/h | 145080 | 146670 | 146650 | 147050 | -0.3 |
x12 | ET中间测线采出量, kg/h | 39600 | 40000 | 40000 | 40000 | 0 |
x13 | PT2塔顶采出量, kg/h | 528415 | 524650 | 524315 | 531350 | -1.3 |
x14 | PT1塔顶采出量, kg/h | 37460 | 39000 | 38520 | 38340 | +0.5 |
x15 | PT1回流比 | 15.00 | 15.20 | 15.08 | 18.00 | -16.2 |
Table 4 Operating parameters of the optimal point and operating point on the Pareto frontier map
符号 | 变量 | A (150.49 MW, 33.59%) | B (155.22 MW, 34.44%) | QP (153.42 MW, 34.23%) | Q* (174 MW, 34.15%) | QP与Q* 偏差% |
---|---|---|---|---|---|---|
x1 | DP1塔顶采出量, kg/h | 101220 | 101860 | 101740 | 104450 | -2.6 |
x2 | DP1回流比 | 1.219 | 1.219 | 1.219 | 1.219 | 0 |
x3 | DP2回流比 | 1.332 | 1.000 | 1.024 | 1.203 | -14.8 |
x4 | DP2塔顶采出量, kg/h | 7680 | 8160 | 8070 | 7960 | +1.5 |
x5 | DB回流比 | 1.038 | 0.962 | 0.954 | 0.988 | -3.3 |
x6 | DB塔顶采出量, kg/h | 10370 | 10280 | 10280 | 10500 | -2.1 |
x7 | DM塔顶采出量, kg/h | 4240 | 4225 | 4225 | 4255 | -0.7 |
x8 | DM丙烷流量, kg/h | 17000 | 16360 | 16330 | 16940 | -3.6 |
x9 | DE回流比 | 1.30 | 1.37 | 1.41 | 1.50 | -6.7 |
x10 | DE塔顶采出量, kg/h | 41800 | 40890 | 40790 | 40580 | +0.5 |
x11 | ET塔顶采出量, kg/h | 145080 | 146670 | 146650 | 147050 | -0.3 |
x12 | ET中间测线采出量, kg/h | 39600 | 40000 | 40000 | 40000 | 0 |
x13 | PT2塔顶采出量, kg/h | 528415 | 524650 | 524315 | 531350 | -1.3 |
x14 | PT1塔顶采出量, kg/h | 37460 | 39000 | 38520 | 38340 | +0.5 |
x15 | PT1回流比 | 15.00 | 15.20 | 15.08 | 18.00 | -16.2 |
位置 | 项目 | 主要设备节能占比 | 主要设备节能相对变化率 | ||||
---|---|---|---|---|---|---|---|
再沸器 | 冷凝器 | 总和 | 再沸器 | 冷凝器 | 总和 | ||
A | DP1 | 1.33% | 2.75% | 4.08% | 5.03% | -27.31% | 11.18% |
DP2 | 0.42% | -0.13% | 0.29% | 5.04% | 1.75% | 1.81% | |
DB | -0.75% | -0.89% | -1.64% | -9.58% | 10.12% | -9.86% | |
DE | 0.99% | 1.12% | 2.11% | 3.03% | -5.27% | 3.91% | |
PT2 | 5.70% | — | 91.06% | 3.31% | — | 18.38% | |
PT1 | 39.76% | 45.60% | 53.57% | -18.31% | |||
other | — | — | 4.10% | — | — | 1.88% | |
B | DP1 | 1.22% | 2.30% | 3.52% | 3.67% | -18.27% | 7.70% |
DP2 | 1.29% | 0.64% | 1.93% | 12.39% | -6.78% | 9.72% | |
DB | -0.34% | -0.48% | -0.82% | -3.43% | 4.42% | -3.95% | |
DE | 2.28% | 1.93% | 4.21% | 5.55% | -7.25% | 6.22% | |
PT2 | 9.04% | — | 86.88% | 4.20% | — | 14.01% | |
PT1 | 34.34% | 43.50% | 36.96% | -13.95% | |||
other | — | — | 4.28% | — | — | 1.73% | |
QP | DP1 | 1.22% | 2.37% | 3.48% | 3.93% | -19.97% | 8.35% |
DP2 | 1.21% | 0.60% | 1.76% | 12.43% | -6.75% | 9.72% | |
DB | -0.28% | -0.43% | -0.69% | -3.08% | 4.14% | -3.64% | |
DE | 1.96% | 1.54% | 3.39% | 5.07% | -6.15% | 5.49% | |
PT2 | 8.04% | — | 90.74% | 4.09% | — | 15.62% | |
PT1 | 37.15% | 45.55% | 42.58% | -15.56% | |||
other | — | — | 3.64% | — | — | 1.55% |
Table 5 Comparison of the optimal point and operating point on the Pareto frontier map at 80 generations
位置 | 项目 | 主要设备节能占比 | 主要设备节能相对变化率 | ||||
---|---|---|---|---|---|---|---|
再沸器 | 冷凝器 | 总和 | 再沸器 | 冷凝器 | 总和 | ||
A | DP1 | 1.33% | 2.75% | 4.08% | 5.03% | -27.31% | 11.18% |
DP2 | 0.42% | -0.13% | 0.29% | 5.04% | 1.75% | 1.81% | |
DB | -0.75% | -0.89% | -1.64% | -9.58% | 10.12% | -9.86% | |
DE | 0.99% | 1.12% | 2.11% | 3.03% | -5.27% | 3.91% | |
PT2 | 5.70% | — | 91.06% | 3.31% | — | 18.38% | |
PT1 | 39.76% | 45.60% | 53.57% | -18.31% | |||
other | — | — | 4.10% | — | — | 1.88% | |
B | DP1 | 1.22% | 2.30% | 3.52% | 3.67% | -18.27% | 7.70% |
DP2 | 1.29% | 0.64% | 1.93% | 12.39% | -6.78% | 9.72% | |
DB | -0.34% | -0.48% | -0.82% | -3.43% | 4.42% | -3.95% | |
DE | 2.28% | 1.93% | 4.21% | 5.55% | -7.25% | 6.22% | |
PT2 | 9.04% | — | 86.88% | 4.20% | — | 14.01% | |
PT1 | 34.34% | 43.50% | 36.96% | -13.95% | |||
other | — | — | 4.28% | — | — | 1.73% | |
QP | DP1 | 1.22% | 2.37% | 3.48% | 3.93% | -19.97% | 8.35% |
DP2 | 1.21% | 0.60% | 1.76% | 12.43% | -6.75% | 9.72% | |
DB | -0.28% | -0.43% | -0.69% | -3.08% | 4.14% | -3.64% | |
DE | 1.96% | 1.54% | 3.39% | 5.07% | -6.15% | 5.49% | |
PT2 | 8.04% | — | 90.74% | 4.09% | — | 15.62% | |
PT1 | 37.15% | 45.55% | 42.58% | -15.56% | |||
other | — | — | 3.64% | — | — | 1.55% |
1 | 朱杰, 崔宇, 陈元君, 等. 甲醇制烯烃过程研究进展[J]. 化工学报, 2010, 61(7): 1674-1684. |
Zhu J, Cui Y, Chen Y J, et al. Recent researches on process from methanol to olefins[J]. CIESC Journal, 2010, 61(7): 1674-1684. | |
2 | 谭捷. 我国乙烯的供需现状及发展前景[J]. 精细与专用化学品, 2019, 27(10): 18-20. |
Tan J. Supply and demand situation and development prospect of ethylene in China[J]. Fine and Specialty Chemicals, 2019, 27(10):18-20. | |
3 | 谭捷. 我国丙烯的供需现状及发展前景[J]. 精细与专用化学品, 2019, 27(11):13-15. |
Tan J. Supply and demand situation and development prospect of propylene in China[J]. Fine and Specialty Chemicals, 2019, 27(11):13-15. | |
4 | Chen J Q, Bozzano A, Glover B, et al. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catalysis Today, 2005, 106(1/2/3/4): 103-107. |
5 | Bandoni J A, Eliceche A M, Serrani A, et al. Optimal operation of ethylene plants[C]//Bussemaker H T, Iedema P D. 21st Symp. Comput. Appl. Chem. Eng.. The Hague, Netherlands: Elsevier, 1990: 77-82. |
6 | Petracci N, Eliceche A M, Bandoni A, et al. Optimal operation of an ethylene plant utility system[J]. Comput. Chem. Eng., 1993, 17: S147-S152. |
7 | Eliceche A M, Petracci N C, Hoch P, et al. Optimal operation of an ethylene plant at variable feed conditions[J]. Comput. Chem. Eng., 1995, 19: 223-228. |
8 | Petracci N C, Hoch P M, Eliceche A M. Flexibility analysis of an ethylene plant[J]. Comput. Chem. Eng., 1996, 20: S443-S448. |
9 | Yan M. Simulation and optimization of ethylene plant[D]. Lubbock: Texas Tech University, 2000. |
10 | 李忠多, 王新华, 王健. MTO技术的研究进展[J]. 黑龙江科学, 2015, 6(9): 24-25. |
Li Z D, Wang X H, Wang J. Research progress of MTO technology[J]. Hei Long Jiang Science, 2015, 6(9): 24-25. | |
11 | 陈昇, 曹新波, 赵梦, 等. MTO前脱丙烷分离流程模拟及优化[J]. 化工进展, 2019, 38(7): 3473-3481. |
Chen S, Cao X B, Zhao M, et al. Simulation and optimization of MTO front-end depropanizer separation process[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3473-3481. | |
12 | 展宝瑞. 甲醇制烯烃产品分离的模拟与优化[D]. 上海: 华东理工大学, 2015. |
Zhan B R. Simulation and optimization of methanol to olefins products separation[D]. Shanghai: East China University of Science and Technology, 2015. | |
13 | 李立新, 杨林林, 李鑫钢. 乙烯装置前脱丙烷前加氢流程设计要点的分析[J]. 石油化工, 2009, 38(2): 174-178. |
Li L X, Yang L L, Li X G. Analysis of design key points for front-end depropanization and acetylene front-end hydrogenation process in ethylene plant[J]. Petrochemical Technology, 2009, 38(2): 174-178. | |
14 | 曲宝学, 赵久旭. 甲醇制烯烃工艺介绍及技术方案选择与比较[J]. 科技创新导报, 2018, 15(6): 107-108. |
Qu B X, Zhao J X. Introduction of methanol to olefin process and selection and comparison of technical schemes[J]. Science and Technology Innovation Herald, 2018, 15(6): 107-108. | |
15 | 董小云. 精馏塔乙烯损失率建模及智能优化控制策略[D]. 大连: 大连理工大学, 2017. |
Dong X Y. Modeling and intelligent optimal control strategy for ethylene loss rate of distillation column[D]. Dalian: Dalian University of Technology, 2017. | |
16 | 王延敏, 姚平经. 热偶精馏过程模拟优化方法的改进——人工神经网络-遗传算法[J]. 化工学报, 2003, 54(9): 1246-1250. |
Wang Y M, Yao P J. Advancement of simulation and optimization for thermally coupled distillation using neural network and genetic algorithm[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(9): 1246-1250. | |
17 | 施辰斐. 甲醇四塔精馏系统能效优化控制的研究[D]. 上海: 上海交通大学, 2014. |
Shi C F. Research on energy-efficiency optimization control of a four-column methanol distillation system[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
18 | Osuolale F N, Zhang J. Thermodynamic optimization of atmospheric distillation unit[J]. Comput. Chem. Eng., 2017, 103: 201-209. |
19 | Jiang P, Du W L. Multi-objective modeling and optimization for scheduling of cracking furnace systems[J]. Chin. J. Chem. Eng., 2017, 25(8): 992-999. |
20 | Inamdar S V. Multi-objective optimization of an industrial crude distillation unit using the elitist non-dominated sorting genetic algorithm[J]. Chemical Engineering, 2004, 82(5): 611-623. |
21 | Chen Q L, Yin Q H, Wang S P. Energy-use analysis and improvement for delayed coking units[J]. Energy, 2004, 29(12/13/14/15): 2225-2237. |
22 | 刘涛, 苏成利. 气体分馏装置的流程模拟及多目标优化[J]. 石油化工高等学校学报, 2013, 26(1): 76-80. |
Liu T, Su C L. Simulation analysis and multi-objective optimization of gas fractionation unit[J]. Journal of Petrochemical Universities, 2013, 26(1): 76-80. | |
23 | Liau C K, Yang C K, Tsai M T. Expert system of a crude oil distillation unit for process optimization using neural networks[J]. Expert Systems with Applications, 2004, 26(2): 247-255. |
24 | 刘海燕. 多目标优化算法及其在化工中的应用研究[D]. 武汉: 武汉理工大学, 2015. |
Liu H Y. Multi-objective optimization algorithms and their applications in chemical engineering[D]. Wuhan: Wuhan University of Technology, 2015. | |
25 | Soave G. Equilibrium constants for modified redlich-kwong equation-of-state[J]. Chem. Eng. Sci., 1972, 27: 1196-1203. |
26 | Listijorini E, Pratama N D, Vianda M A, et al. Optimization of depropanizer column quality product by changing controller set points of reflux flow and reboiler heat rate[C]// 2016 6th International Annual Engineering Seminar. Yogyakarta, Indonesia: IEEE, 2016: 116-120. |
27 | Nawaz M, Jobson M. Synthesis and optimization of demethanizer flowsheets for low temperature separation processes[J]. Nawaz M & Jobson M, 2010, 9: 79-84. |
28 | Luyben W L. Comparison of a conventional two‐column demethanizer/deethanizer configuration requiring refrigerated condensers with a nonconventional column/rectifier configuration[J]. J. Chem. Technol. Biotechnol., 2016, 91(6): 1688-1696. |
29 | Huang D, Luo X L. Process transition based on dynamic optimization with the case of a throughput-fluctuating ethylene column[J]. Ind. Eng. Chem. Res., 2018, 57(18): 6292-6302. |
30 | Ryzhikov V G, Alekhin S V, Sokolov E N, et al. Experience in modernizing a propane-propylene fraction separation plant[J]. Chem. Technol. Fuels Oils, 2011, 46(6): 375-377. |
31 | Jana A K. Advances in heat pump assisted distillation column: a review[J]. Energy Convers. Manage., 2014, 77: 287-297. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[3] | Qucheng LIN, Zuwei LIAO. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm [J]. CIESC Journal, 2022, 73(11): 5047-5055. |
[4] | Xu LIU, Songlin XU, Yanfei WANG. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation [J]. CIESC Journal, 2022, 73(10): 4518-4526. |
[5] | WEI Bin, ZHOU Xin, WANG Yaowei, GUO Zhenlian, CHEN Xiaobo, LIU Yibin, YANG Chaohe. Multi-objective optimization of FCC separation system based on improved NSGA-Ⅱ [J]. CIESC Journal, 2021, 72(5): 2735-2744. |
[6] | ZHAO Yang, XIONG Weili. Multi-objective optimization control of wastewater treatment process based on multi-strategy adaptive differential evolution algorithm [J]. CIESC Journal, 2021, 72(4): 2167-2177. |
[7] | ZHU Pengfei, GUO Leilei, YAO Jing, YANG Fusheng, ZHANG Zaoxiao, WU Zhen. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine [J]. CIESC Journal, 2021, 72(2): 1089-1099. |
[8] | Jialei DU,Chi ZHAI,Yuanzhi ZHU,Delong XIE,Yi MEI. Simulation study on heat energy recovery technology of furnace-process phosphoric acid process [J]. CIESC Journal, 2021, 72(11): 5790-5799. |
[9] | Le WU, Jing WANG, Yuqi WANG, Lan ZHENG. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC [J]. CIESC Journal, 2020, 71(5): 2182-2189. |
[10] | Haotian YE, Yining DONG, Shuang XU, Xiong ZOU, Zhenhua LI, Hongguang DONG. Multi-objective optimization of heat exchanger networks considering inherent safety [J]. CIESC Journal, 2019, 70(7): 2584-2593. |
[11] | Xiangkai MENG, Yingying JIANG, Wenjing ZHAO, Xudong PENG. Analysis of thermohydrodynamic lubrication performance of spiral-grooved liquid film seals [J]. CIESC Journal, 2019, 70(4): 1512-1521. |
[12] | Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541. |
[13] | HAN Zhonghe, MEI Zhongkai, LI Peng. Working fluid selection and multi-objective optimization of organic Rankine cycle with variable turbine efficiency [J]. CIESC Journal, 2018, 69(6): 2603-2611. |
[14] | WANG Menghan, TU Shunli, YU Chunli. Optimization strategy of weld line assisted by air traps improvement based on Kriging and NSGA-Ⅱ [J]. CIESC Journal, 2018, 69(10): 4449-4455. |
[15] | CHEN Jun, ZHOU Weiguo, WANG Hai, LI Su. Multi-objective optimal strategy for steam power system in steel industry based on electricity equivalent calculation [J]. CIESC Journal, 2016, 67(9): 3804-3811. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||