CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2076-2085.DOI: 10.11949/0438-1157.20200895
• Catalysis, kinetics and reactors • Previous Articles Next Articles
ZHU Huihong1(),MAO Zhiwei2,YANG Tao1,FENG Xiang2(),JIN Hao1,PENG Chong1,3(),YANG Chaohe2,WANG Jifeng1,FANG Xiangchen1
Received:
2020-07-06
Revised:
2020-09-25
Online:
2021-04-05
Published:
2021-04-05
Contact:
FENG Xiang,PENG Chong
朱慧红1(),茆志伟2,杨涛1,冯翔2(),金浩1,彭冲1,3(),杨朝合2,王继锋1,方向晨1
通讯作者:
冯翔,彭冲
作者简介:
朱慧红(1978—),女,硕士, 高级工程师,基金资助:
CLC Number:
ZHU Huihong, MAO Zhiwei, YANG Tao, FENG Xiang, JIN Hao, PENG Chong, YANG Chaohe, WANG Jifeng, FANG Xiangchen. Influence mechanism of catalyst morphology on the active sites of Ni-Mo/ Al2O3 catalyst for ebullated bed residue hydrogenation[J]. CIESC Journal, 2021, 72(4): 2076-2085.
朱慧红, 茆志伟, 杨涛, 冯翔, 金浩, 彭冲, 杨朝合, 王继锋, 方向晨. 催化剂形貌对沸腾床渣油加氢Ni-Mo/Al2O3 催化剂活性位的影响机制[J]. 化工学报, 2021, 72(4): 2076-2085.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 长度/mm | 直径/mm | 体积当量直径/mm | 比表面积/(m2·g-1) | 平均孔径/nm | 孔体积/(ml·g-1) |
---|---|---|---|---|---|---|
球形 | — | 0.4~0.5 | 0.4~0.5 | 163 | 15.34 | 0.625 |
圆柱形 | 3~5 | 0.8 | 1.42~1.69 | 169 | 13.61 | 0.575 |
Table 1 Structural and textural properties of spherical and cylindrical Ni-Mo/Al2O3 catalysts
催化剂 | 长度/mm | 直径/mm | 体积当量直径/mm | 比表面积/(m2·g-1) | 平均孔径/nm | 孔体积/(ml·g-1) |
---|---|---|---|---|---|---|
球形 | — | 0.4~0.5 | 0.4~0.5 | 163 | 15.34 | 0.625 |
圆柱形 | 3~5 | 0.8 | 1.42~1.69 | 169 | 13.61 | 0.575 |
催化剂 | 球形 | 圆柱形 |
---|---|---|
最大颗粒长度/nm | 6.5 | 4.41 |
平均颗粒长度/nm | 3.67 | 2.94 |
平均堆垛层数 | 2.46 | 2.07 |
1~2层百分比/% | 55.2 | 69.8 |
3~4层百分比/% | 41.8 | 28.3 |
≥ 5层百分比/% | 3 | 1.9 |
分散度 | 29.8 | 36.9 |
Table 2 HRTEM analysis data of spherical and cylindrical Ni-Mo/Al2O3催化剂
催化剂 | 球形 | 圆柱形 |
---|---|---|
最大颗粒长度/nm | 6.5 | 4.41 |
平均颗粒长度/nm | 3.67 | 2.94 |
平均堆垛层数 | 2.46 | 2.07 |
1~2层百分比/% | 55.2 | 69.8 |
3~4层百分比/% | 41.8 | 28.3 |
≥ 5层百分比/% | 3 | 1.9 |
分散度 | 29.8 | 36.9 |
Fig.6 Electron probe microanalysis and distribution curves of Ni, V, Fe and C on the cross-section of spent cylindrical [(a), (b)] and spherical [(c), (d)] catalyst pellets
参数 | 数值 |
---|---|
H含量/% | 10.58 |
C含量/% | 85.41 |
S含量/% | 3.64 |
Ni/V含量/(μg·g-1) | 62.94/160 |
CCR含量/% | 20.3 |
密度(20℃)/(g·cm-3) | 1.0102 |
四组分分析 | |
饱和分/% | 19.63 |
芳香分/% | 49.53 |
胶质/% | 27.64 |
沥青质/% | 3.2 |
>500℃收率/% | 96.1 |
Table 3 Properties of the vacuum residue
参数 | 数值 |
---|---|
H含量/% | 10.58 |
C含量/% | 85.41 |
S含量/% | 3.64 |
Ni/V含量/(μg·g-1) | 62.94/160 |
CCR含量/% | 20.3 |
密度(20℃)/(g·cm-3) | 1.0102 |
四组分分析 | |
饱和分/% | 19.63 |
芳香分/% | 49.53 |
胶质/% | 27.64 |
沥青质/% | 3.2 |
>500℃收率/% | 96.1 |
28 | Sun S H, Wang G, Fang X C, et al. Development of catalyst for STRONG ebullated-bed residue hydrotreating process[J]. Petroleum Refinery Engineering, 2011, 41(12): 26-30. |
29 | Peng C, Guo R, Feng X, et al. Tailoring the structure of Co-Mo/mesoporous γ-Al2O3 catalysts by adding multi-hydroxyl compound: a 3000 kt/a industrial-scale diesel ultra-deep hydrodesulfurization study[J]. Chemical Engineering Journal, 2019, 377: 119706. |
30 | Li G C, Lu X L, Tang Z, et al. Preparation of NiMo/γ-Al2O3 catalysts with large pore size for vacuum residue hydrotreatment[J]. Materials Research Bulletin, 2013, 48(11): 4526-4530. |
31 | Lai W K, Pang L Q, Zheng J B, et al. Efficient one pot synthesis of mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization[J]. Fuel Processing Technology, 2013, 110: 8-16. |
32 | Zaikovskii V I, Plyasova L M, Burmistrov V A, et al. Sulphide catalysts on silica as a support(Ⅱ):High resolution electron microscopy data[J]. Applied Catalysis, 1984, 11(1): 15-27. |
33 | Li Y P, Zhang T T, Liu D P, et al. Study of the promotion effect of citric acid on the active NiMoS phase in NiMo/Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17195-17206. |
34 | Hensen E J M, Kooyman P J, van der Meer Y, et al. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. Journal of Catalysis, 2001, 199(2): 224-235. |
35 | Topsøe H. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Applied Catalysis A: General, 2007, 322: 3-8. |
36 | Kobayashi K, Nagai M. Active sites of sulfided NiMo/Al2O3 catalysts for 4, 6-dimethyldibenzothiophene hydrodesulfurization-effects of Ni and Mo components, sulfidation, citric acid and phosphate addition[J]. Catalysis Today, 2017, 292: 74-83. |
37 | Li H F, Li M F, Nie H. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous and Mesoporous Materials, 2014, 188: 30-36. |
38 | López Cordero R, Gil Llambias F J, López Agudo A. Temperature-programmed reduction and zeta potential studies of the structure of Mo/O3Al2O3 and Mo/O3SiO2 catalysts effect of the impregnation pH and molybdenum loading[J]. Applied Catalysis, 1991, 74(1): 125-136. |
39 | Scheffer B, Arnoldy P, Moulijn J A. Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica, and carbon[J]. Journal of Catalysis, 1988, 112(2): 516-527. |
1 | BP. BP Statistical Review of World Energy 2019[EB/OL]. [2020-05-06]. . |
2 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
3 | Kim S H, Kim K D, Lee Y K. Effects of dispersed MoS2 catalysts and reaction conditions on slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2017, 347: 127-137. |
4 | Marafi A, Albazzaz H, Rana M S. Hydroprocessing of heavy residual oil: opportunities and challenges[J]. Catalysis Today, 2019, 329: 125-134. |
5 | Kim K D, Lee Y K. Active phase of dispersed MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2019, 369: 111-121. |
6 | Danial-Fortain P, Gauthier T, Merdrignac I, et al. Reactivity study of Athabasca vacuum residue in hydroconversion conditions[J]. Catalysis Today, 2010, 150(3/4): 255-263. |
7 | Castañeda L C, Muñoz J A D, Ancheyta J. Current situation of emerging technologies for upgrading of heavy oils[J]. Catalysis Today, 2014, 220/221/222: 248-273. |
8 | Jeong H R, Lee Y K. Comparison of unsupported WS2 and MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Applied Catalysis A: General, 2019, 572: 90-96. |
9 | Marques J, Guillaume D, Merdrignac I, et al. Effect of catalysts acidity on residues hydrotreatment[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 727-737. |
10 | Kohli K, Prajapati R, Maity S K, et al. Accelerated pre-coking of NiMo/γ-Al2O3 catalyst: effect on the hydroprocessing activity of vacuum residue[J]. Fuel, 2019, 235: 437-447. |
11 | Liu B, Zhao K D, Chai Y M, et al. Slurry phase hydrocracking of vacuum residue in the presence of presulfided oil-soluble MoS2 catalyst[J]. Fuel, 2019, 246: 133-140. |
12 | Speight J G. The Desulfurization of Heavy Oils and Residua[M]. CRC Press, 1999. |
13 | Kim S H, Kim K D, Lee D, et al. Structure and activity of dispersed Co, Ni, or Mo sulfides for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2018, 364: 131-140. |
14 | Lee H S, Nguyen-Huy C, Pham T T, et al. ZrO2-impregnated red mud as a novel catalyst for steam catalytic cracking of vacuum residue[J]. Fuel, 2016, 165: 462-467. |
15 | Díaz-Boffelli G, Ancheyta J, Muñoz J A D, et al. Experimental study and economic analysis of heavy oil partial upgrading by solvent deasphalting-hydrotreating[J]. Energy & Fuels, 2018, 32(1): 55-59. |
16 | Che Y J, Hao J H, Zhang J H, et al. Vacuum residue thermal cracking: product yield determination and characterization using thermogravimetry-Fourier transform infrared spectrometry and a fluidized bed reactor[J]. Energy & Fuels, 2018, 32(2): 1348-1357. |
17 | Kaminski T, Husein M M. Thermal cracking of atmospheric residue versus vacuum residue[J]. Fuel Processing Technology, 2018, 181: 331-339. |
18 | Liu J K, Fang X C, Yang T. Novel ebullated bed residue hydrocracking process[J]. Energy & Fuels, 2017, 31(6): 6568-6579. |
19 | Galiasso Tailleur R, Caprioli L. Catalyst pore plugging effects on hydrocracking reactions in an Ebullated bed reactor operation[J]. Catalysis Today, 2005, 109(1/2/3/4): 185-194. |
20 | Morel F, Kressmann S, Harlé V, et al. Processes and catalysts for hydrocracking of heavy oil and residues[J]. Studies in Surface Science and Catalysis, 1997, 106: 1-16. |
21 | Sahu R, Song B J, Jeon Y P, et al. Upgrading of vacuum residue in batch type reactor using Ni-Mo supported on goethite catalyst[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 115-122. |
22 | Lauritsen J V, Kibsgaard J, Olesen G H, et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007, 249(2): 220-233. |
23 | Eijsbouts S, van den Oetelaar L C A, van Puijenbroek R R. MoS2 morphology and promoter segregation in commercial Type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts[J]. Journal of Catalysis, 2005, 229(2): 352-364. |
24 | Al-Dalama K, Stanislaus A. A comparative study of the influence of chelating agents on the hydrodesulfurization (HDS) activity of alumina and silica-alumina-supported CoMo catalysts[J]. Energy & Fuels, 2006, 20(5): 1777-1783. |
25 | Pashigreva A V, Klimov O V, Bukhtiyarova G A, et al. The superior activity of the CoMo hydrotreating catalysts, prepared using citric acid: what's the reason?[J]. Studies in Surface Science and Catalysis, 2010, 175: 109-116. |
26 | Escobar J, Barrera M C, Gutiérrez A W, et al. Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier[J]. Fuel Processing Technology, 2017, 156: 33-42. |
27 | Ramírez J, Castillo-Villalón P, Gutiérrez-Alejandre A, et al. Interaction of different molecules with the hydrogenation and desulfurization sites of NiMoS supported particles with different morphology[J]. Catalysis Today, 2020, 353: 99-111. |
28 | 孙素华, 王刚, 方向晨, 等. STRONG沸腾床渣油加氢催化剂研究及工业放大[J]. 炼油技术与工程, 2011, 41(12): 26-30. |
40 | Fan Y, Xiao H, Shi G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. Journal of Catalysis, 2011, 279(1): 27-35. |
41 | Lai W K, Song W J, Pang L Q, et al. The effect of starch addition on combustion synthesis of NiMo-Al2O3 catalysts for hydrodesulfurization[J]. Journal of Catalysis, 2013, 303: 80-91. |
42 | Gray M R. Upgrading Petroleum Residues and Heavy Oils[M]. CRC Press,1994 |
43 | Zhu H H, Mao Z W, Liu B, et al. Regulating catalyst morphology to boost the stability of Ni-Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating[J]. Green Energy & Environment, 2020,In Press. |
44 | Mitra-Kirtley S, Mullins O C, Ralston C Y, et al. Sulfur characterization in asphaltene, resin, and oil fractions of two crude oils[J]. ACS Division of Fuel Chemistry, Preprints, 1999, 44(4): 763-767. |
45 | Ancheyta J, Rana M S, Furimsky E. Hydroprocessing of heavy petroleum feeds: tutorial[J]. Catalysis Today, 2005, 109(1/2/3/4): 3-15. |
46 | Vradman L, Landau M V. Structure-function relations in supported Ni-W sulfide hydrogenation catalysts[J]. Catalysis Letters, 2001, 77(1/2/3): 47-54. |
47 | Rana M, Ancheyta J, Ramírez J. Characteristics of heavy oil hydroprocessing catalysts[M]//Hydroprocessing of Heavy Oils and Residua. CRC Press, 2007: 121-190. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[4] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[5] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[10] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[11] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[14] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[15] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||