19 |
Walter M, Zünd T, Kovalenko M V. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials[J]. Nanoscale, 2015, 7(20): 9158-9163.
|
20 |
荣华, 王春刚, 周明. 用作锂离子电池负极的FeS2微球的制备及性能[J]. 高等学校化学学报, 2020, 41(3): 447-455.
|
|
Rong H, Wang C G, Zhou M. Synthesis and electrochemical performance of FeS2 microspheres as an anode for Li-ion batteries[J]. Chemical Journal of Chinese Universities, 2020, 41(3): 447-455.
|
21 |
Wen X, Wei X L, Yang L W, et al. Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(5): 2090-2096.
|
22 |
Lu J H, Lian F, Guan L L, et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages[J]. Journal of Materials Chemistry A, 2019, 7(3): 991-997.
|
23 |
Fan H H, Li H H, Huang K C, et al. Metastable marcasite-FeS2 as a new anode material for lithium ion batteries: CNFs-improved lithiation/delithiation reversibility and Li-storage properties[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10708-10716.
|
24 |
Jing P, Wang Q, Wang B Y, et al. Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage[J]. Carbon, 2020, 159: 366-377.
|
25 |
Yin W H, Li W Y, Wang K, et al. FeS2@porousoctahedral carbon derived from metal-organic framework as a stable and high capacity anode for lithium-ion batteries[J]. Electrochimica Acta, 2019, 318: 673-682.
|
26 |
Xi Y L, Ye X M, Duan S R, et al. Iron vacancies and surface modulation of iron disulfide nanoflowers as a high power/energy density cathode for ultralong-life stable Li storage[J]. Journal of Materials Chemistry A, 2020, 8(29): 14769-14777.
|
27 |
Xia Q, Tan Q Q. Towel-like composite: edge-rich MoS2 nanosheets oriented anchored on curly N-doped graphene for high-performance lithium and sodium storage[J]. Electrochimica Acta, 2019, 308: 217-226.
|
28 |
Xia Q, Zhao H L, Du Z H, et al. Design and synthesis of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(2): 605-611.
|
29 |
Pang H C, Sun W W, Lv L P, et al. MOF-templated nanorice-nanosheet core-satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(48): 19179-19188.
|
1 |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
2 |
Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
|
30 |
Xue H T, Yu D Y W, Qing J, et al. Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2015, 3(15): 7945-7949.
|
31 |
Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries[J]. Carbon, 2021, 171: 171-178.
|
32 |
He J R, Li Q, Chen Y F, et al. Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for high-performance lithium-ion batteries[J]. Carbon, 2017, 114: 111-116.
|
33 |
Zeng Z P, Zhao H L, Lv P, et al. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries[J]. Journal of Power Sources, 2015, 274: 1091-1099.
|
34 |
Li Q, Li H S, Xia Q T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83.
|
3 |
Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24.
|
4 |
Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
5 |
Wang D K, Zhou C L, Cao B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318.
|
6 |
Liu Z H, Yu Q, Zhao Y L, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2019, 48(1): 285-309.
|
7 |
Song J H, Xiao D D, Jia H P, et al. A comparative study of pomegranate Sb@C yolk-shell microspheres as Li and Na-ion battery anodes[J]. Nanoscale, 2018, 11(1): 348-355.
|
8 |
Wang H, Wu X, Qi X J, et al. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Materials Research Bulletin, 2018, 103: 32-37.
|
9 |
Xia Q, Zhao H L, Du Z H, et al. Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 180: 947-956.
|
10 |
Li R, Xiao W, Miao C, et al. Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries[J]. Ceramics International, 2019, 45(10): 13530-13535.
|
11 |
Li J B, Yan D, Hou S J, et al. Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 335: 579-589.
|
12 |
Xia Q, Tan Q Q. Tubular hierarchical structure composed of O-doped ultrathin MoS2 nanosheets grown on carbon microtubes with enhanced lithium ion storage properties[J]. Journal of Alloys and Compounds, 2019, 779: 156-166.
|
13 |
Xia J, Liu L, Jamil S, et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries[J]. Energy Storage Materials, 2019, 17: 1-11.
|
14 |
Xu C, Jing Y, He J R, et al. Self-assembled interwoven CoS2/CNTs/graphene architecture as anode for high-performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 708: 1178-1183.
|
15 |
Xu X, Ying H J, Zhang S L, et al. Biomass-derived 3D interconnected porous carbon-encapsulated nano-FeS2 for high-performance lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(6): 5589-5596.
|
16 |
Xu X J, Liu J, Liu Z B, et al. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries[J]. ACS Nano, 2017, 11(9): 9033-9040.
|
17 |
Xu L, Hu Y J, Zhang H X, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4251-4255.
|
18 |
Li L S, Cabán-Acevedo M, Girard S N, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries[J]. Nanoscale, 2014, 6(4): 2112-2118.
|