CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3149-3159.DOI: 10.11949/0438-1157.20210027
• Special column for comprehensive utilization of salt lake resouces in Qinghai • Previous Articles Next Articles
LIANG-SU Zhuocheng1(),JI Guoxun1(
),SUN Xinli1,WANG Bo3,ZHANG Shitong2,DAI Xing2(
)
Received:
2021-01-08
Revised:
2021-04-22
Online:
2021-06-05
Published:
2021-06-05
Contact:
JI Guoxun,DAI Xing
梁苏卓成1(),姬国勋1(
),孙新利1,王波3,张仕通2,代星2(
)
通讯作者:
姬国勋,代星
作者简介:
梁苏卓成(1997—),男,硕士研究生,基金资助:
CLC Number:
LIANG-SU Zhuocheng, JI Guoxun, SUN Xinli, WANG Bo, ZHANG Shitong, DAI Xing. Theoretical study on mechanism of silicon heteroatoms to improve the complexation ability of crown ethers to lithium ions[J]. CIESC Journal, 2021, 72(6): 3149-3159.
梁苏卓成, 姬国勋, 孙新利, 王波, 张仕通, 代星. 硅杂原子提升冠醚对锂离子络合能力的机理理论研究[J]. 化工学报, 2021, 72(6): 3149-3159.
键 | 距离/? | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | L-Li+ | LSi/C | LSi/C-Li+ | LSi | LSi-Li+ | LSi-O | LSi-O-Li+ | LSi-M | LSi-M-Li+ | |
C—C | 1.517 | 1.525 | 1.519 | 1.523 | 1.517 | 1.520 | 1.516 | 1.515 | 1.521 | 1.519 |
C—O | 1.404 | 1.430 | 1.409 | 1.429 | 1.402 | 1.426 | 1.404 | 1.422 | 1.404 | 1.425 |
Si—O | — | — | 1.689 | 1.724 | 1.694 | 1.733 | 1.685 | 1.726 | 1.691 | 1.725 |
Si—Si | — | — | — | — | 2.355 | 2.371 | 2.351 | 2.350 | 2.355 | 2.356 |
Si—C | — | — | 1.875 | 1.863 | 1.885 | 1.873 | 1.885 | 1.876 | 1.887 | 1.875 |
C—Li+ | — | 2.646 | — | 2.689 | — | 2.740 | — | 2.859 | — | 2.794 |
Si—Li+ | — | — | — | 2.930 | — | 3.075 | — | 3.176 | — | 3.217 |
O1—Li+ | — | 1.872 | — | 1.724 | — | 1.892 | — | 1.990 | — | 1.955 |
O2—Li+ | — | 1.887 | — | 1.893 | — | 1.944 | — | 1.975 | — | 1.955 |
O3—Li+ | — | 1.872 | — | 1.909 | — | 1.944 | — | 2.037 | — | 1.955 |
O4—Li+ | — | 1.887 | — | 1.865 | — | 1.892 | — | 1.964 | — | 1.955 |
O—Li+ | — | 1.880 | — | 1.848 | — | 1.918 | — | 1.991 | — | 1.955 |
Table 1 Geometrical parameters of the free crown ethers and the crown-Li+ complexes
键 | 距离/? | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | L-Li+ | LSi/C | LSi/C-Li+ | LSi | LSi-Li+ | LSi-O | LSi-O-Li+ | LSi-M | LSi-M-Li+ | |
C—C | 1.517 | 1.525 | 1.519 | 1.523 | 1.517 | 1.520 | 1.516 | 1.515 | 1.521 | 1.519 |
C—O | 1.404 | 1.430 | 1.409 | 1.429 | 1.402 | 1.426 | 1.404 | 1.422 | 1.404 | 1.425 |
Si—O | — | — | 1.689 | 1.724 | 1.694 | 1.733 | 1.685 | 1.726 | 1.691 | 1.725 |
Si—Si | — | — | — | — | 2.355 | 2.371 | 2.351 | 2.350 | 2.355 | 2.356 |
Si—C | — | — | 1.875 | 1.863 | 1.885 | 1.873 | 1.885 | 1.876 | 1.887 | 1.875 |
C—Li+ | — | 2.646 | — | 2.689 | — | 2.740 | — | 2.859 | — | 2.794 |
Si—Li+ | — | — | — | 2.930 | — | 3.075 | — | 3.176 | — | 3.217 |
O1—Li+ | — | 1.872 | — | 1.724 | — | 1.892 | — | 1.990 | — | 1.955 |
O2—Li+ | — | 1.887 | — | 1.893 | — | 1.944 | — | 1.975 | — | 1.955 |
O3—Li+ | — | 1.872 | — | 1.909 | — | 1.944 | — | 2.037 | — | 1.955 |
O4—Li+ | — | 1.887 | — | 1.865 | — | 1.892 | — | 1.964 | — | 1.955 |
O—Li+ | — | 1.880 | — | 1.848 | — | 1.918 | — | 1.991 | — | 1.955 |
系统 | 配位键 | ρ/a.u. | ?2ρ/a.u. | H/a.u. | |V|/G |
---|---|---|---|---|---|
L-Li+ | O1—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 |
O2—Li+ | 0.0344 | 0.2412 | 0.0112 | 0.770 | |
O3—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 | |
O4—Li+ | 0.0344 | 0.2413 | 0.0112 | 0.771 | |
LSi/C-Li+ | O1—Li+ | 0.0341 | 0.2404 | 0.0111 | 0.771 |
O2—Li+ | 0.0338 | 0.2367 | 0.0110 | 0.769 | |
O3—Li+ | 0.0323 | 0.2241 | 0.0103 | 0.771 | |
O4—Li+ | 0.0362 | 0.2605 | 0.0123 | 0.767 | |
LSi-Li+ | O1—Li+ | 0.0332 | 0.2339 | 0.0110 | 0.768 |
O2—Li+ | 0.0294 | 0.1987 | 0.0091 | 0.775 | |
O3—Li+ | 0.0293 | 0.1985 | 0.0090 | 0.775 | |
O4—Li+ | 0.0332 | 0.2343 | 0.0110 | 0.768 | |
LSi-O-Li+ | O1—Li+ | 0.0254 | 0.1651 | 0.0073 | 0.782 |
O2—Li+ | 0.0265 | 0.1755 | 0.0080 | 0.777 | |
O3—Li+ | 0.0228 | 0.1460 | 0.0063 | 0.787 | |
O4—Li+ | 0.0271 | 0.1810 | 0.0084 | 0.773 | |
LSi-M-Li+ | O1—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
O2—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O3—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O4—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
Table 2 Topological electron density properties at critical points of the O—Li+
系统 | 配位键 | ρ/a.u. | ?2ρ/a.u. | H/a.u. | |V|/G |
---|---|---|---|---|---|
L-Li+ | O1—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 |
O2—Li+ | 0.0344 | 0.2412 | 0.0112 | 0.770 | |
O3—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 | |
O4—Li+ | 0.0344 | 0.2413 | 0.0112 | 0.771 | |
LSi/C-Li+ | O1—Li+ | 0.0341 | 0.2404 | 0.0111 | 0.771 |
O2—Li+ | 0.0338 | 0.2367 | 0.0110 | 0.769 | |
O3—Li+ | 0.0323 | 0.2241 | 0.0103 | 0.771 | |
O4—Li+ | 0.0362 | 0.2605 | 0.0123 | 0.767 | |
LSi-Li+ | O1—Li+ | 0.0332 | 0.2339 | 0.0110 | 0.768 |
O2—Li+ | 0.0294 | 0.1987 | 0.0091 | 0.775 | |
O3—Li+ | 0.0293 | 0.1985 | 0.0090 | 0.775 | |
O4—Li+ | 0.0332 | 0.2343 | 0.0110 | 0.768 | |
LSi-O-Li+ | O1—Li+ | 0.0254 | 0.1651 | 0.0073 | 0.782 |
O2—Li+ | 0.0265 | 0.1755 | 0.0080 | 0.777 | |
O3—Li+ | 0.0228 | 0.1460 | 0.0063 | 0.787 | |
O4—Li+ | 0.0271 | 0.1810 | 0.0084 | 0.773 | |
LSi-M-Li+ | O1—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
O2—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O3—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O4—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
计算级别 | 能量/(kcal/mol) | 系统 | |||||
---|---|---|---|---|---|---|---|
泛函 | 基组 | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
B3LYP-D3(BJ) | Def2QZVP | ΔEint | -104.83 | -112.26 | -118.53 | -124.46 | -129.12 |
ΔEgeom | 11.26 | 16.72 | 19.28 | 23.73 | 23.57 | ||
BLYP-D3(BJ) | QZ4P | ΔEint (Total) | -102.17 | -109.60 | -116.03 | -122.20 | -126.68 |
ΔEels | -73.37 | -77.68 | -79.59 | -77.67 | -84.22 | ||
ΔEorb | -60.55 | -61.38 | -60.54 | -58.37 | -59.74 | ||
ΔEPauli | 40.23 | 38.70 | 33.76 | 24.42 | 27.83 | ||
ΔEdisp | -8.49 | -9.23 | -9.65 | -10.58 | -10.55 | ||
B3LYP-D3(BJ) | TZP | ΔEint (Total) | -105.94 | -113.28 | -119.41 | -125.19 | -129.74 |
ΔEels | -76.08 | -80.92 | -82.34 | -81.64 | -86.80 | ||
ΔEorb | -62.55 | -63.06 | -62.68 | -59.28 | -62.04 | ||
ΔEPauli | 39.73 | 38.38 | 33.68 | 24.65 | 27.98 | ||
ΔEdisp | -7.03 | -7.69 | -8.07 | -8.91 | -8.88 |
Table 3 Crown-Li+ interaction energies and energy decompositions
计算级别 | 能量/(kcal/mol) | 系统 | |||||
---|---|---|---|---|---|---|---|
泛函 | 基组 | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
B3LYP-D3(BJ) | Def2QZVP | ΔEint | -104.83 | -112.26 | -118.53 | -124.46 | -129.12 |
ΔEgeom | 11.26 | 16.72 | 19.28 | 23.73 | 23.57 | ||
BLYP-D3(BJ) | QZ4P | ΔEint (Total) | -102.17 | -109.60 | -116.03 | -122.20 | -126.68 |
ΔEels | -73.37 | -77.68 | -79.59 | -77.67 | -84.22 | ||
ΔEorb | -60.55 | -61.38 | -60.54 | -58.37 | -59.74 | ||
ΔEPauli | 40.23 | 38.70 | 33.76 | 24.42 | 27.83 | ||
ΔEdisp | -8.49 | -9.23 | -9.65 | -10.58 | -10.55 | ||
B3LYP-D3(BJ) | TZP | ΔEint (Total) | -105.94 | -113.28 | -119.41 | -125.19 | -129.74 |
ΔEels | -76.08 | -80.92 | -82.34 | -81.64 | -86.80 | ||
ΔEorb | -62.55 | -63.06 | -62.68 | -59.28 | -62.04 | ||
ΔEPauli | 39.73 | 38.38 | 33.68 | 24.65 | 27.98 | ||
ΔEdisp | -7.03 | -7.69 | -8.07 | -8.91 | -8.88 |
Fig.3 Electron density difference diagrams and electrostatic potential distributions on the electron density van der Waals surface (isodensity = 0.001 a.u.)
项目 | NPA/e | Mulliken/e | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
Li+ | 0.861 | 0.868 | 0.872 | 0.893 | 0.893 | 0.548 | 0.551 | 0.574 | 0.590 | 0.597 |
O(total) | -2.726 | -3.022 | -3.316 | -3.905 | -3.924 | -1.964 | -2.088 | -2.196 | -2.389 | -2.408 |
O1 | -0.682 | -0.989 | -0.985 | -1.273 | -0.981 | -0.493 | -0.617 | -0.618 | -0.715 | -0.602 |
O2 | -0.681 | -0.678 | -0.673 | -0.983 | -0.981 | -0.489 | -0.488 | -0.480 | -0.606 | -0.602 |
O3 | -0.682 | -0.677 | -0.673 | -0.666 | -0.981 | -0.493 | -0.486 | -0.480 | -0.461 | -0.602 |
O4 | -0.681 | -0.678 | -0.985 | -0.983 | -0.981 | -0.489 | -0.497 | -0.618 | -0.607 | -0.602 |
Si | — | 1.952 | 1.483 | 1.481 | 1.486 | — | 0.646 | 0.488 | 0.499 | 0.490 |
Table 4 Population analysis of crown-Li+ complexes
项目 | NPA/e | Mulliken/e | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
Li+ | 0.861 | 0.868 | 0.872 | 0.893 | 0.893 | 0.548 | 0.551 | 0.574 | 0.590 | 0.597 |
O(total) | -2.726 | -3.022 | -3.316 | -3.905 | -3.924 | -1.964 | -2.088 | -2.196 | -2.389 | -2.408 |
O1 | -0.682 | -0.989 | -0.985 | -1.273 | -0.981 | -0.493 | -0.617 | -0.618 | -0.715 | -0.602 |
O2 | -0.681 | -0.678 | -0.673 | -0.983 | -0.981 | -0.489 | -0.488 | -0.480 | -0.606 | -0.602 |
O3 | -0.682 | -0.677 | -0.673 | -0.666 | -0.981 | -0.493 | -0.486 | -0.480 | -0.461 | -0.602 |
O4 | -0.681 | -0.678 | -0.985 | -0.983 | -0.981 | -0.489 | -0.497 | -0.618 | -0.607 | -0.602 |
Si | — | 1.952 | 1.483 | 1.481 | 1.486 | — | 0.646 | 0.488 | 0.499 | 0.490 |
1 | Awual M R. Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater[J]. Chemical Engineering Journal, 2016, 303: 539-546. |
2 | Carreira-Barral I, Rodríguez-Rodríguez A, Regueiro-Figueroa M, et al. A merged experimental and theoretical conformational study on alkaline-earth complexes with lariat ethers derived from 4, 13-diaza-18-crown-6[J]. Inorganica Chimica Acta, 2011, 370(1): 270-278. |
3 | 王晓晨,王英明,刘威,等. 12-冠-4对非质子Li-O2电池氧电极的影响[J]. 物理化学学报, 2016, 32(1): 343-348. |
Wang X C, Wang Y M, Liu W, et al. Influence of 12-crown-4 on oxygen electrode of aprotic Li-O2 battery[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 343-348. | |
4 | 赵岩, 敖银勇, 陈建, 等. 基于密度泛函理论研究锂-冠醚复合物的结构和热力学参数[J]. 物理化学学报, 2016, 32(7): 1681-1690. |
Zhao Y, Ao Y Y, Chen J, et al. Density functional theory studies of the structures and thermodynamic parameters of Li+-crown ether complexes[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1681-1690. | |
5 | Hay B P, Rustad J R. Structural criteria for the rational design of selective ligands: extension of the MM3 force field to aliphatic ether complexes of the alkali and alkaline earth cations[J]. Journal of the American Chemical Society, 1994, 116(14): 6316-6326. |
6 | Schultz R A, Dishong D M, Gokel G W. Lariat ethers(3): Macrocylic polyethers bearing donor groups on flexible arms attached at a nitrogen pivot point[J]. Tetrahedron Letters, 1981, 22(28): 2623-2626. |
7 | Arif A M, Yousaf A, Xu H L, et al. N-(O-methoxyphenyl)aza-15-crown-5-ether derivatives: highly efficient and wide range nonlinear optical response based cation recognition[J]. Journal of Molecular Liquids, 2020, 301: 112492. |
8 | Dong G C, Duan K F, Zhang Q, et al. A new colorimetric and fluorescent chemosensor based on Schiff base-phenyl-crown ether for selective detection of Al3+ and Fe3+[J]. Inorganica Chimica Acta, 2019, 487: 322-330. |
9 | Zhang Q, Ma R F, Li Z Y, et al. A multi-responsive crown ether-based colorimetric/fluorescent chemosensor for highly selective detection of Al3+, Cu2+ and Mg2+[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117857. |
10 | Reuter K, Dankert F, Donsbach C, et al. Structural study of mismatched disila-crown ether complexes[J]. Inorganics, 2017, 5(1): 11. |
11 | Dankert F, Donsbach C, Rienmüller J, et al. Alkaline earth metal template (cross-)coupling reactions with hybrid disila-crown ether analogues[J]. Chemistry - A European Journal, 2019, 25(69): 15934-15943. |
12 | Dankert F, Reuter K, Donsbach C, et al. Hybrid disila-crown ethers as hosts for ammonium cations: the O–Si–Si–O linkage as an acceptor for hydrogen bonding[J]. Inorganics, 2018, 6(1): 15. |
13 | Weinhold F, West R. The nature of the silicon-oxygen bond[J]. Organometallics, 2011, 30(21): 5815-5824. |
14 | Passmore J, Rautiainen J M. On the lower Lewis basicity of siloxanes compared to ethers[J]. European Journal of Inorganic Chemistry, 2012, 2012(36): 6002-6010. |
15 | Cameron T S, Decken A, Krossing I, et al. Reactions of a cyclodimethylsiloxane (Me2SiO)6 with silver salts of weakly coordinating anions; crystal structures of [Ag(Me2SiO)6][Al] ([Al] = [FAl{OC(CF3)3}3], [Al{OC(CF3)3}4]) and their comparison with [Ag(18-crown-6)]2[SbF6]2[J]. Inorganic Chemistry, 2013, 52(6): 3113-3126. |
16 | Reuter K, Buchner M R, Thiele G, et al. Stable alkali-metal complexes of hybrid disila-crown ethers[J]. Inorganic Chemistry, 2016, 55(9): 4441-4447. |
17 | Reuter K, Thiele G, Hafner T, et al. Synthesis and coordination ability of a partially silicon based crown ether[J]. Chemical Communications (Cambridge, England), 2016, 52(90): 13265-13268. |
18 | Dankert F, Reuter K, Donsbach C, et al. A structural study of alkaline earth metal complexes with hybrid disila-crown ethers[J]. Dalton Transactions, 2017, 46(27): 8727-8735. |
19 | 唐伟强, 谢鹏, 徐小飞, 等. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652. |
Tang W Q, Xie P, Xu X F, et al. Development and applications of reaction density functional theory[J]. CIESC Journal, 2021, 72(2): 633-652. | |
20 | Zhang Y, Wang X Y, Luo B H, et al. DFT study of crown ether-bridged Z-stilbenes and their complexes with alkali metal cations[J]. Journal of Organometallic Chemistry, 2012, 699: 31-38. |
21 | Despotović I. On the metal ion selectivity of PNP-lariat ether: an insight from density functional theory calculations[J]. Structural Chemistry, 2020, 31(5): 1801-1819. |
22 | Choi C M, Heo J, Kim N J. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: a density functional theory study using a continuum solvation model[J]. Chem. Cent. J., 2012, 6(1): 84. |
23 | Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, General Physics, 1988, 38(6): 3098-3100. |
24 | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, Condensed Matter, 1988, 37(2): 785-789. |
25 | Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. |
26 | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465. |
27 | Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305. |
28 | Weigend F. Accurate Coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065. |
29 | Bader R W F. Atoms in Molecules. A Quantum Theory[M]. New York: Oxford University Press, 1990. |
30 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
31 | Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics, 1970, 19(4): 553-566. |
32 | Reed A E, Weinstock R B, Weinhold F. Natural population analysis[J]. The Journal of Chemical Physics, 1985, 83(2): 735-746. |
33 | Mulliken R S. Electronic population analysis on LCAO–MO molecular wave functions(Ⅰ) [J]. The Journal of Chemical Physics, 1955, 23(10): 1833-1840. |
34 | Mulliken R S. Electronic population analysis on LCAO–MO molecular wave functions(Ⅱ): Overlap populations, bond orders, and covalent bond energies[J]. The Journal of Chemical Physics, 1955, 23(10): 1841-1846. |
35 | Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions(Ⅲ): Effects of hybridization on overlap and gross AO populations[J]. The Journal of Chemical Physics, 1955, 23(12): 2338-2342. |
36 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
37 | Bickelhaupt F M, Baerends E J. Kohn-Sham density functional theory: predicting and understanding chemistry[M]//Reviews in Computational Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007: 1-86. |
38 | Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slater method[J]. Theoretica Chimica Acta, 1977, 46(1): 1-10. |
39 | Ziegler T, Rauk A. CO, CS, N2, PF3, and CNCH3 as CT donors and T acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method[J]. Inorg. Chem., 1979, 18(7): 1755-1759. |
40 | te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967. |
41 | van Lenthe E, Baerends E J. Optimized Slater-type basis sets for the elements 1—118[J]. Journal of Computational Chemistry, 2003, 24(9): 1142-1156. |
42 | Zhao Y, Schultz N E, Truhlar D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Theory and Computation, 2006, 2(2): 364-382. |
43 | Petersson G A, Bennett A, Tensfeldt T G, et al. A complete basis set model chemistry(Ⅰ): The total energies of closed-shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89(4): 2193-2218. |
44 | Petersson G A, Al-Laham M A. A complete basis set model chemistry(Ⅱ): Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090. |
45 | Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. |
46 | Groth P, Møllendal H, Seip R, et al. On the crystal structure of the (1∶1) complex between lithium thiocyanate and 1, 4, 7, 10-tetraoxacyclododecane at room temperature[J]. Acta Chemica Scandinavica, 1981, 35a: 463-465. |
47 | Cremer D, Kraka E.A description of the chemical bond in terms of local properties of electron density and energy[J]. Croatica Chemica Acta, 1985, 57(6):1259-1281. |
48 | Vener M V, Manaev A V, Egorova A N, et al. QTAIM study of strong H-bonds with the O-H···A fragment (A = O, N) in three-dimensional periodical crystals[J]. The Journal of Physical Chemistry A, 2007, 111(6): 1155-1162. |
49 | Espinosa E, Alkorta I, Elguero J, et al. From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems[J]. The Journal of Chemical Physics, 2002, 117(12): 5529-5542. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[13] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||