1 |
金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8.
|
|
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8.
|
2 |
Xie K C. Reviews of clean coal conversion technology in China: situations & challenges[J]. Chinese Journal of Chemical Engineering, 2021, 35: 62-69.
|
3 |
Yi Q, Feng J, Lu B C, et al. Energy evaluation for lignite pyrolysis by solid heat carrier coupled with gasification[J]. Energy & Fuels, 2013, 27(8): 4523-4533.
|
4 |
Morgan T J, Kandiyoti R. Pyrolysis of coals and biomass: analysis of thermal breakdown and its products[J]. Chemical Reviews, 2014, 114(3): 1547-1607.
|
5 |
Lu W Y, Cao Q X, Xu B, et al. A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal[J]. Journal of Cleaner Production, 2020, 265: 121786.
|
6 |
周琦. 低阶煤提质技术现状及完善途径[J]. 洁净煤技术, 2016, 22(2): 23-30.
|
|
Zhou Q. Status and improvement approach of low rank coal upgrading technologies[J]. Clean Coal Technology, 2016, 22(2): 23-30.
|
7 |
兰玉顺, 陈文文. 煤热解技术研究与开发进展[J]. 煤化工, 2017, 45(2): 66-70, 18.
|
|
Lan Y S, Chen W W. Research and development progress of coal pyrolysis technology[J]. Coal Chemical Industry, 2017, 45(2): 66-70, 18.
|
8 |
范涛, 初茉, 畅志兵. 蒙东褐煤热解技术工业应用进展[J]. 化工进展, 2021, 40(3): 1362-1370.
|
|
Fan T, Chu M, Chang Z B. Industrial application progress of lignite pyrolysis technology in eastern area of Inner Mongolia, China[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1362-1370.
|
9 |
曾凡虎, 陈钢, 李泽海, 等. 我国低阶煤热解提质技术进展[J]. 化肥设计, 2013, 51(2): 1-7.
|
|
Zeng F H, Chen G, Li Z H, et al. Technical progress for pyrolysis/upgrade of low rank coal in China[J]. Chemical Fertilizer Design, 2013, 51(2): 1-7.
|
10 |
史俊高, 安晓熙, 房有为. 我国低阶煤热解提质技术现状及研究进展[J]. 中外能源, 2019, 24(4): 15-23.
|
|
Shi J G, An X X, Fang Y W. Status and research progress of low rank coal pyrolysis upgrading technologies in China[J]. Sino-Global Energy, 2019, 24(4): 15-23.
|
11 |
刘壮, 田宜水, 胡二峰, 等. 低阶煤热解影响因素及其工艺技术研究进展[J]. 洁净煤技术, 2021, 27(1): 50-59.
|
|
Liu Z, Tian Y S, Hu E F, et al. Research progress on influencing factors and technology of low-rank coal pyrolysis[J]. Clean Coal Technology, 2021, 27(1): 50-59.
|
12 |
刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439.
|
|
Liu Z Y. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439.
|
13 |
白效言, 张飏, 王岩, 等. 低阶煤热解关键技术问题分析及研究进展[J]. 煤炭科学技术, 2018, 46(1): 192-198.
|
|
Bai X Y, Zhang Y, Wang Y, et al. Analysis of key issues and research progress in pyrolysis of low rank coal[J]. Coal Science and Technology, 2018, 46(1): 192-198.
|
14 |
刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 8-24.
|
|
Liu Z Y. Radical chemistry in the pyrolysis of heavy organics[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 8-24.
|
15 |
Liu Z Y, Guo X J, Shi L, et al. Reaction of volatiles—a crucial step in pyrolysis of coals[J]. Fuel, 2015, 154: 361-369.
|
16 |
Liu F G, Jin L J, Yang J, et al. In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 573-581.
|
17 |
Miura K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2/3): 119-135.
|
18 |
Wang F, Zeng X, Kang G J, et al. Secondary reactions suppression during fuel fast pyrolysis in an infrared heating apparatus for the fixed bed pyrolysis process with internals[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105163.
|
19 |
姚建中, 郭慕孙. 煤炭拔头提取液体燃料新工艺[J]. 化学进展, 1995, 7(3): 205-208.
|
|
Yao J Z, Guo M S. A new process of coal topping for extracting liquid fuels[J]. Progress in Chemistry, 1995, 7(3): 205-208.
|
20 |
刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报, 2016, 67(1): 1-5.
|
|
Liu Z Y. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1): 1-5.
|
21 |
Pather T S, Al-Masry W A. The influence of bed depth on secondary reactions during slow pyrolysis of coal[J]. Journal of Analytical and Applied Pyrolysis, 1996, 37(1): 83-94.
|
22 |
Shuang Y, Wu C N, Yan B H, et al. Heat transfer inside particles and devolatilization for coal pyrolysis to acetylene at ultrahigh temperatures[J]. Energy & Fuels, 2010, 24(5): 2991-2998.
|
23 |
刘训良, 曹欢, 王淦, 等. 煤颗粒热解的传热传质分析[J]. 计算物理, 2014, 31(1): 59-66.
|
|
Liu X L, Cao H, Wang G, et al. Numerical analysis of heat and mass transfer during pyrolysis of coal particle[J]. Chinese Journal of Computational Physics, 2014, 31(1): 59-66.
|
24 |
Meng D X, Wang T, Xu J L, et al. A numerical study on the pyrolysis of large coal particles: heat transfer and volatile evolution[J]. Fuel, 2019, 254: 115668.
|
25 |
Wang J L, Lian W H, Li P, et al. Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: reaction behavior and heat transfer[J]. Fuel, 2017, 207: 126-135.
|
26 |
Di Blasi C. Kinetic and heat transfer control in the slow and flash pyrolysis of solids[J]. Industrial & Engineering Chemistry Research, 1996, 35(1): 37-46.
|
27 |
Uzun B B, Pütün A E, Pütün E. Rapid pyrolysis of olive residue(1):Effect of heat and mass transfer limitations on product yields and bio-oil compositions[J]. Energy & Fuels, 2007, 21(3): 1768-1776.
|
28 |
胡国新, 刘雅琴, 王明磊. 固定床中热气体非稳态渗流传热与煤热解过程[J]. 化工学报, 2001, 52(11): 993-999.
|
|
Hu G X, Liu Y Q, Wang M L. Hot gas flow and mild pyrolysis of coal in fixed bed[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(11): 993-999.
|
29 |
李方舟, 李文英, 冯杰. 固体热载体法褐煤热解过程中的传质传热特性[J]. 化工学报, 2016, 67(4): 1136-1144.
|
|
Li F Z, Li W Y, Feng J. Characteristics of mass and heat transfer in lignite pyrolysis with solid heat carrier[J]. CIESC Journal, 2016, 67(4): 1136-1144.
|
30 |
He W J, Liu Z Y, Liu Q Y, et al. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134: 375-380.
|
31 |
杨帅强, 都林, 李松庚, 等. 含尘含油高温热解煤气除尘技术研究进展[J]. 洁净煤技术, 2021, 27(1): 193-201.
|
|
Yang S Q, Du L, Li S G, et al. Advances on dust removal technology of high temperature pyrolysis of coal gas containing dust and oil[J]. Clean Coal Technology, 2021, 27(1): 193-201.
|
32 |
周琦. 内蒙古褐煤热解过程中的破碎/粉化特性[J]. 洁净煤技术, 2021, 27(3) 166-173.
|
|
Zhou Q. Fragmentation/pulverization characteristics of Inner Mongolia lignite during pyrolysis[J]. Clean Coal Technology, 2021, 27(3):166-173.
|
33 |
陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707.
|
|
Chen Z H, Gao S Q, Xu G W. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707.
|
34 |
许光文, 武荣成, 汪印. 一种含碳物质热解的强化方法及热解装置: 102212378A[P]. 2011-10-12.
|
|
Xu G W, Wu R C, Wang Y. Method for strengthening pyrolysis of carbon-containing substance and pyrolysis device: 102212378A[P]. 2011-10-12.
|
35 |
赖登国, 战金辉, 陈兆辉, 等. 内构件移动床固体热载体油页岩热解技术[J]. 化工学报, 2017, 68(10): 3647-3657.
|
|
Lai D G, Zhan J H, Chen Z H, et al. Oil shale pyrolysis by solid heat carrier in internal-structured moving bed [J]. CIESC Journal, 2017, 68(10): 3647-3657.
|
36 |
Zhang C, Wu R C, Xu G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2014, 28(1): 236-244.
|
37 |
胡二峰, 武荣成, 张纯, 等. 间热径向流反应器料层厚度对煤热解特性的影响[J]. 化工学报, 2015, 66(2): 738-745.
|
|
Hu E F, Wu R C, Zhang C, et al. Effect of coal bed thickness on pyrolysis behavior in indirectly heated radial flow fixed-bed reactor[J]. CIESC Journal, 2015, 66(2): 738-745.
|
38 |
Qian Y N, Zhan J H, Yu Y, et al. CFD model of coal pyrolysis in fixed bed reactor[J]. Chemical Engineering Science, 2019, 200: 1-11.
|
39 |
Zhang C, Wu R C, Hu E F, et al. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy & Fuels, 2014, 28(11): 7294-7302.
|
40 |
武荣成, 张纯, 许光文. 内构件移动床碎煤热解中试产物分布特性[J]. 煤炭转化, 2019, 42(2): 13-17.
|
|
Wu R C, Zhang C, Xu G W. Characteristics of coal pyrolysis product distribution in moving-bed reactor with internals[J]. Coal Conversion, 2019, 42(2): 13-17.
|