CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 990-1007.DOI: 10.11949/0438-1157.20211390
• Reviews and monographs • Previous Articles Next Articles
Ke JIN1,3(),Chenguang WANG1,3,Longlong MA2,Qi ZHANG2()
Received:
2021-09-27
Revised:
2021-11-29
Online:
2022-03-14
Published:
2022-03-15
Contact:
Qi ZHANG
通讯作者:
张琦
作者简介:
金科(1993—),男,博士研究生,基金资助:
CLC Number:
Ke JIN, Chenguang WANG, Longlong MA, Qi ZHANG. Preparation of core-shell nanomaterials and their application in thermocatalytic hydrogenation of CO/CO2[J]. CIESC Journal, 2022, 73(3): 990-1007.
金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007.
Add to citation manager EndNote|Ris|BibTeX
1 | Zhou W, Cheng K, Kang J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
2 | Henrici-Olivé G, Olivé S. The Fischer-Tropsch synthesis: molecular weight distribution of primary products and reaction mechanism[J]. Angewandte Chemie International Edition in English, 1976, 15(3): 136-141. |
3 | Jiao F, Li J, Pan X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
4 | Ye R P, Ding J, Gong W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10: 5698. |
5 | Eren B, Zherebetskyy D, Patera L L, et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption[J]. Science, 2016, 351(6272): 475-478. |
6 | Prašnikar A, Pavlišič A, Ruiz-Zepeda F, et al. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13021-13029. |
7 | Lee J F, Chern W S, Lee M D, et al. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium[J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 511-515. |
8 | Xu Y F, Ma G Y, Bai J Y, et al. Yolk@Shell FeMn@Hollow HZSM-5 nanoreactor for directly converting syngas to aromatics[J]. ACS Catalysis, 2021, 11(8): 4476-4485. |
9 | Nie R F, Lei H, Pan S Y, et al. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425. |
10 | Zhang Q, Lee I, Joo J B, et al. Core-shell nanostructured catalysts[J]. Accounts of Chemical Research, 2013, 46(8): 1816-1824. |
11 | Su H Y, Tian Q, Hurd Price C A, et al. Nanoporous core@shell particles: design, preparation, applications in bioadsorption and biocatalysis[J]. Nano Today, 2020, 31: 100834. |
12 | 仇媛, 王长真, 李海涛, 等. 单分散Co3O4@SiO2核壳催化剂的制备及N2O催化分解性能[J]. 化工学报, 2018, 69(4): 1493-1499. |
Qiu Y, Wang C Z, Li H T, et al. Preparation of monodispersed core-shell Co3O4@SiO2 catalyst and its application in N2O catalytic decomposition[J]. CIESC Journal, 2018, 69(4): 1493-1499. | |
13 | 贾尚宁, 常娟娟, 李宁波, 等. 核壳结构磁性纳米复合物的合成及载药性能[J]. 化工学报, 2018, 69: 170-175. |
Jia S N, Chang J J, Li N B, et al. Synthesis of magnetic nanoparticles with core-shell structure and its drug loading properties[J]. CIESC Journal, 2018, 69: 170-175. | |
14 | Das S, Pérez-Ramírez J, Gong J L, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
15 | Holgado M, Cintas A, Ibisate M, et al. Three-dimensional arrays formed by monodisperse TiO2 coated on SiO2 spheres[J]. Journal of Colloid and Interface Science, 2000, 229(1): 6-11. |
16 | Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. Journal of the American Chemical Society, 2008, 130(1): 28-29. |
17 | Liu J, Yang T, Wang D W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4: 2798. |
18 | Liu J, Qiao S Z, Liu H, et al. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie, 2011, 123(26): 6069-6073. |
19 | Li W, Yang J, Wu Z, et al. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures[J]. Journal of the American Chemical Society, 2012, 134(29): 11864-11867. |
20 | Li W, Yue Q, Deng Y H, et al. Ordered mesoporous materials based on interfacial assembly and engineering[J]. Advanced Materials, 2013, 25(37): 5129-5152. |
21 | Lou X W, Archer L A. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles[J]. Advanced Materials, 2008, 20(10): 1853-1858. |
22 | Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie, 2004, 116(5): 607-611. |
23 | Yu G B, Sun B, Pei Y, et al. Fe x O y @C spheres as an excellent catalyst for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2010, 132(3): 935-937. |
24 | Zhang Y L, Ma L L, Tu J L, et al. One-pot synthesis of promoted porous iron-based microspheres and its Fischer-Tropsch performance[J]. Applied Catalysis A: General, 2015, 499: 139-145. |
25 | Liu J, Sun Z K, Deng Y H, et al. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups[J]. Angewandte Chemie International Edition, 2009, 48(32): 5875-5879. |
26 | Tu J L, Yuan J J, Kang S M, et al. One-pot synthesis of carbon-coated Fe3O4 nanoparticles with tunable size for production of gasoline fuels[J]. New Journal of Chemistry, 2018, 42(13): 10861-10867. |
27 | Garcia-Torres J, Vallés E, Gómez E. Synthesis and characterization of Co@Ag core-shell nanoparticles[J]. Journal of Nanoparticle Research, 2010, 12(6): 2189-2199. |
28 | Almana N, Phivilay S P, Laveille P, et al. Design of a core-shell Pt-SiO2 catalyst in a reverse microemulsion system: Distinctive kinetics on CO oxidation at low temperature[J]. Journal of Catalysis, 2016, 340: 368-375. |
29 | Kim C D, Park C. Formation of Al2O3-graphite core shells versus growth time by using thermal chemical vapor deposition[J]. Journal of the Korean Physical Society, 2016, 69(5): 842-846. |
30 | Zhao Y X, Zhang Y, Li Y P, et al. A flexible chemical vapor deposition method to synthesize copper@carbon core-shell structured nanowires and the study of their structural electrical properties[J]. New Journal of Chemistry, 2012, 36(5): 1161. |
31 | Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22. |
32 | Mayya K S, Gittins D I, Caruso F. Gold-titania core-shell nanoparticles by polyelectrolyte complexation with a titania precursor[J]. Chemistry of Materials, 2001, 13(11): 3833-3836. |
33 | Li H F, Gao S Y, Zheng Z L, et al. Bifunctional composite prepared using layer-by-layer assembly of polyelectrolyte-gold nanoparticle films on Fe3O4-silica core-shell microspheres[J]. Catalysis Science & Technology, 2011, 1(7): 1194. |
34 | Kandula S, Jeevanandam P. Synthesis of Cu2O@Ag polyhedral core-shell nanoparticles by a thermal decomposition approach for catalytic applications[J]. European Journal of Inorganic Chemistry, 2016, 2016(10): 1548-1557. |
35 | Dai S, Tissot A, Serre C. Recent progresses in metal-organic frameworks based core-shell composites[J]. Advanced Energy Materials, 2022, 12(4): 2100061. |
36 | Zeng X J, Yang B, Zhu L Y, et al. Structure evolution of Prussian blue analogues to CoFe@C core-shell nanocomposites with good microwave absorbing performances[J]. RSC Advances, 2016, 6(107): 105644-105652. |
37 | Danielis M, Colussi S, De Leitenburg C, et al. Outstanding methane oxidation performance of palladium-embedded ceria catalysts prepared by a one-step dry ball-milling method[J]. Angewandte Chemie, 2018, 130(32): 10369-10373. |
38 | Kuzovnikova L, Komogortsev S, Denisova E, et al. Structure and magnetism in ball-milled core-shell Al2O3@Co particles[J]. Materials Today: Proceedings, 2019, 12: 159-162. |
39 | Maleki A, Aghaei M. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell[J]. Ultrasonics Sonochemistry, 2017, 38: 585-589. |
40 | Chiu W, Khiew P, Cloke M, et al. Heterogeneous seeded growth: synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8212-8218. |
41 | Ma X X, Li Y X, Hussain I, et al. Core-shell structured nanoenergetic materials: preparation and fundamental properties[J]. Advanced Materials, 2020, 32(30): 2001291. |
42 | Mallik K, Mandal M, Pradhan N, et al. Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of "core-shell" type structures[J]. Nano Letters, 2001, 1(6): 319-322. |
43 | Li X L, Zeng Z Y, Hu B, et al. Surface-atom dependence of ZnO-supported Ag@Pd Core@Shell nanocatalysts in CO2 hydrogenation to CH3OH[J]. ChemCatChem, 2017, 9(6): 924-928. |
44 | Yang C, Zhao B, Gao R, et al. Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer-Tropsch synthesis catalyst[J]. ACS Catalysis, 2017, 7(9): 5661-5667. |
45 | Xie C L, Chen C, Yu Y, et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons[J]. Nano Letters, 2017, 17(6): 3798-3802. |
46 | Haghtalab A, Mosayebi A. Co@Ru nanoparticle with core-shell structure supported over γ-Al2O3 for Fischer-Tropsch synthesis[J]. International Journal of Hydrogen Energy, 2014, 39(33): 18882-18893. |
47 | Liang B L, Duan H M, Sun T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932. |
48 | Wu X, Ma H F, Zhang H T, et al. High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core-shell catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21350-21362. |
49 | Zhang Y L, Ma L L, Wang T J, et al. MnO2 coated Fe2O3 spindles designed for production of C 5 + hydrocarbons in Fischer-Tropsch synthesis[J]. Fuel, 2016, 177: 197-205. |
50 | Wang J, Xu Y F, Ma G Y, et al. Directly converting syngas to linear α-olefins over core-shell Fe3O4@MnO2 catalysts[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43578-43587. |
51 | Jiang J D, Wen C Y, Tian Z P, et al. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 2155-2162. |
52 | Tang C L, Liping L, Zhang L M, et al. High carbon-resistance Ni@CeO2 core-shell catalysts for dry reforming of methane[J]. Kinetics and Catalysis, 2017, 58(6): 800-808. |
53 | Tisseraud C, Comminges C, Habrioux A, et al. Cu-ZnO catalysts for CO2 hydrogenation to methanol: Morphology change induced by ZnO lixiviation and its impact on the active phase formation[J]. Molecular Catalysis, 2018, 446: 98-105. |
54 | Cui X J, Yan W J, Yang H H, et al. Preserving the active Cu-ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2661-2672. |
55 | Wang H, Wu B X, Cai Y, et al. Core-shell-structured Co-Z@TiO2 catalysts derived from ZIF-67 for efficient production of C5 + hydrocarbons in Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7900-7908. |
56 | Wang W B, Ding M Y, Ma L L, et al. Fe2O3 nanoparticles encapsulated in TiO2 nanotubes for Fischer-Tropsch synthesis: the confinement effect of nanotubes on the catalytic performance[J]. Fuel, 2016, 164: 347-351. |
57 | Salvatore K L, Deng K, Yue S, et al. Optimized microwave-based synthesis of thermally stable inverse catalytic core-shell motifs for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32591-32603. |
58 | Tian Z P, Wang C G, Si Z, et al. Product distributions of Fischer-Tropsch synthesis over core-shell catalysts: the effects of diverse shell thickness[J]. ChemistrySelect, 2018, 3(44): 12415-12423. |
59 | Zhang Y L, Wang T J, Ma L L, et al. Promotional effects of Mn on SiO2-encapsulated iron-based spindles for catalytic production of liquid hydrocarbons[J]. Journal of Catalysis, 2017, 350: 41-47. |
60 | Xu Y F, Wang J, Ma G Y, et al. Selective conversion of syngas to olefins-rich liquid fuels over core-shell FeMn@SiO2 catalysts[J]. Fuel, 2020, 275: 117884. |
61 | Cheng Q P, Tian Y, Lyu S S, et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J]. Nature Communications, 2018, 9(1): 3250. |
62 | Subramanian V, Cheng K, Lancelot C, et al. Nanoreactors: an efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6(3): 1785-1792. |
63 | Shi Z S, Tan Q Q, Wu D F. A novel Core-Shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE Journal, 2019, 65(3): 1047-1058. |
64 | Yang H Y, Gao P, Zhang C, et al. Core-shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Catalysis Communications, 2016, 84: 56-60. |
65 | Ding F S, Zhang A F, Liu M, et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances, 2014, 4(17): 8930. |
66 | Yu X F, Zhang J L, Wang X, et al. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Applied Catalysis B: Environmental, 2018, 232: 420-428. |
67 | Xu Y F, Li X Y, Gao J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
68 | Tian Z P, Wang C G, Yue J, et al. Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon[J]. Catalysis Science & Technology, 2019, 9(11): 2728-2741. |
69 | Lyu S, Wang L, Li Z, et al. Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer-Tropsch synthesis conditions[J]. Nature Communications, 2020, 11(1): 1-8. |
70 | Qin H F, Kang S F, Wang Y G, et al. Lignin-based fabrication of Co@C core-shell nanoparticles as efficient catalyst for selective Fischer-Tropsch synthesis of C5 + compounds[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1240-1247. |
71 | Chen W, Pan X, Willinger M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137. |
72 | Chen W, Pan X, Bao X. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426. |
73 | Chen W, Fan Z, Pan X, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419. |
74 | Yang Z Q, Guo S J, Pan X L, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J]. Energy & Environmental Science, 2011, 4(11): 4500. |
75 | Chen X Q, Deng D H, Pan X L, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
76 | Pan X L, Fan Z L, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511. |
77 | Ma G Y, Wang X Z, Xu Y F, et al. Enhanced conversion of syngas to gasoline-range hydrocarbons over carbon encapsulated bimetallic FeMn nanoparticles[J]. ACS Applied Energy Materials, 2018, 1(8): 4304-4312. |
78 | Qiu B, Yang C, Guo W H, et al. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks[J]. Journal of Materials Chemistry A, 2017, 5(17): 8081-8086. |
79 | Liu J H, Zhang A F, Jiang X, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4017-4023. |
80 | Ma C P, Zhang W, Chang Q, et al. θ-Fe3C dominated Fe@C core-shell catalysts for Fischer-Tropsch synthesis: roles of θ-Fe3C and carbon shell[J]. Journal of Catalysis, 2021, 393: 238-246. |
81 | Abelló S, Montané D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review[J]. ChemSusChem, 2011, 4(11): 1538-1556. |
82 | Qiu T, Wang L, Lv S, et al. SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins[J]. Fuel, 2017, 203: 811-816. |
83 | Chen J Y, Wang X, Wu D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: strategy for product distribution[J]. Fuel, 2019, 239: 44-52. |
84 | Jiang N, Yang G H, Zhang X F, et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications, 2011, 12(11): 951-954. |
85 | Wang C T, Zhang J, Qin G Q, et al. Direct conversion of syngas to ethanol within zeolite crystals[J]. Chem, 2020, 6(3): 646-657. |
86 | He J, Yoneyama Y, Xu B, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins[J]. Langmuir, 2005, 21(5): 1699-1702. |
87 | He J J, Liu Z L, Yoneyama Y, et al. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas[J]. Chemistry - A European Journal, 2006, 12(32): 8296-8304. |
88 | Yang G H, He J J, Yoneyama Y, et al. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins[J]. Applied Catalysis A: General, 2007, 329: 99-105. |
89 | Yang G H, Tan Y S, Han Y Z, et al. Increasing the shell thickness by controlling the core size of zeolite capsule catalyst: application in iso-paraffin direct synthesis[J]. Catalysis Communications, 2008, 9(15): 2520-2524. |
90 | Yang G H, He J J, Zhang Y, et al. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas[J]. Energy & Fuels, 2008, 22(3): 1463-1468. |
91 | Bao J, Yang G H, Okada C, et al. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas[J]. Applied Catalysis A: General, 2011, 394(1/2): 195-200. |
92 | Cui W G, Li Y T, Yu L, et al. Zeolite-encapsulated ultrasmall Cu/ZnO x nanoparticles for the hydrogenation of CO2 to methanol[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18693-18703. |
93 | Bao J, He J J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angewandte Chemie, 2008, 120(2): 359-362. |
94 | Li X G, He J J, Meng M, et al. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity[J]. Journal of Catalysis, 2009, 265(1): 26-34. |
95 | Lu P, Chen Q J, Yang G H, et al. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catalysis, 2020, 10(2): 1366-1374. |
96 | Amoo C C, Li M Q, Noreen A, et al. Fabricating Fe nanoparticles embedded in zeolite Y microcrystals as active catalysts for Fischer-Tropsch synthesis[J]. ACS Applied Nano Materials, 2020, 3(8): 8096-8103. |
97 | Liu H Y, Fu Y J, Li M Q, et al. Activated carbon templated synthesis of hierarchical zeolite Y-encapsulated iron catalysts for enhanced gasoline selectivity in CO hydrogenation[J]. Journal of Materials Chemistry A, 2021, 9(13): 8663-8673. |
98 | Yang G H, Thongkam M, Vitidsant T, et al. A double-shell capsule catalyst with core-shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas[J]. Catalysis Today, 2011, 171(1): 229-235. |
99 | Wang X X, Yang G H, Zhang J F, et al. Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation[J]. Chemical Communications, 2016, 52(46): 7352-7355. |
100 | Wang X X, Zeng C Y, Gong N N, et al. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline[J]. ACS Catalysis, 2021, 11(3): 1528-1547. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[3] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[4] | Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components [J]. CIESC Journal, 2023, 74(S1): 154-160. |
[5] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[6] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[7] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[8] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[9] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[10] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[11] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[12] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[13] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[14] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[15] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||