CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1166-1172.DOI: 10.11949/0438-1157.20211393
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Feixiang XU1,2(),Liqun JIANG1,3(
),Anqing ZHENG1,Zengli ZHAO1
Received:
2021-09-27
Revised:
2021-11-16
Online:
2022-03-14
Published:
2022-03-15
Contact:
Liqun JIANG
通讯作者:
蒋丽群
作者简介:
徐飞翔(1997—),男,硕士研究生,基金资助:
CLC Number:
Feixiang XU, Liqun JIANG, Anqing ZHENG, Zengli ZHAO. Carbon-based solid acid catalyzed the pyrolysis of cellulose to produce levoglucosan and levoglucosenone[J]. CIESC Journal, 2022, 73(3): 1166-1172.
徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172.
样品 | 酸度/(mmol/g) |
---|---|
Fe3O4/C500-H3PO4 | 3.2 |
Fe3O4/C600-H3PO4 | 2.7 |
Fe3O4/C700-H3PO4 | 5.5 |
Fe3O4/C800-H3PO4 | 4.5 |
Table 1 NH3-TPD analysis of different catalysts
样品 | 酸度/(mmol/g) |
---|---|
Fe3O4/C500-H3PO4 | 3.2 |
Fe3O4/C600-H3PO4 | 2.7 |
Fe3O4/C700-H3PO4 | 5.5 |
Fe3O4/C800-H3PO4 | 4.5 |
样品 | 热解初始温度/℃ | 热解结束温度/℃ | 最大失重速率对应温度/℃ | 最大失重速率①/(%/℃) |
---|---|---|---|---|
纤维素 | 309 | 410 | 346 | -2.7 |
Fe3O4/C500-H3PO4+纤维素 | 257 | 546 | 300 | -9.7 |
Fe3O4/C600-H3PO4+纤维素 | 273 | 520 | 305 | -10.6 |
Fe3O4/C700-H3PO4+纤维素 | 296 | 507 | 329 | -14.0 |
Fe3O4/C800-H3PO4+纤维素 | 258 | 513 | 294 | -9.0 |
Table 2 TG characteristic temperature of cellulose mixed with different catalysts
样品 | 热解初始温度/℃ | 热解结束温度/℃ | 最大失重速率对应温度/℃ | 最大失重速率①/(%/℃) |
---|---|---|---|---|
纤维素 | 309 | 410 | 346 | -2.7 |
Fe3O4/C500-H3PO4+纤维素 | 257 | 546 | 300 | -9.7 |
Fe3O4/C600-H3PO4+纤维素 | 273 | 520 | 305 | -10.6 |
Fe3O4/C700-H3PO4+纤维素 | 296 | 507 | 329 | -14.0 |
Fe3O4/C800-H3PO4+纤维素 | 258 | 513 | 294 | -9.0 |
1 | Akhtar J, Saidina Amin N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5101-5109. |
2 | Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy & Fuels, 2020, 34(12): 15557-15578. |
3 | Rahman M M, Liu R H, Cai J M. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil — a review[J]. Fuel Processing Technology, 2018, 180: 32-46. |
4 | Zhu X Q, Tong S, Li X, et al. Conversion of biomass into high-quality bio-oils by degradative solvent extraction combined with subsequent pyrolysis[J]. Energy & Fuels, 2017, 31(4): 3987-3994. |
5 | Zhang C, Zhang Z C. Essential quality attributes of tangible bio-oils from catalytic pyrolysis of lignocellulosic biomass[J]. The Chemical Record, 2019, 19(9): 2044-2057. |
6 | Nallar M, Wong H W. Enhanced levoglucosan yields from the copyrolysis of cellulose and high-density polyethylene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9480-9488. |
7 | Wu K, Wu H, Zhang H Y, et al. Enhancing levoglucosan production from waste biomass pyrolysis by Fenton pretreatment[J]. Waste Management, 2020, 108: 70-77. |
8 | Alcazar-Ruiz A, Dorado F, Sanchez-Silva L. Fast pyrolysis of agroindustrial wastes blends: hydrocarbon production enhancement[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105242. |
9 | Zhang H Y, Meng X, Liu C, et al. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Processing Technology, 2017, 167: 484-490. |
10 | Lusi A, Radhakrishnan H, Hu H Y, et al. Plasma electrolysis of cellulose in polar aprotic solvents for production of levoglucosenone[J]. Green Chemistry, 2020, 22(22): 7871-7883. |
11 | Liu J J, Hou Q D, Ju M T, et al. Biomass pyrolysis technology by catalytic fast pyrolysis, catalytic co-pyrolysis and microwave-assisted pyrolysis: a review[J]. Catalysts, 2020, 10(7): 742. |
12 | Zhou Y C, Chen Z Z, Gong H J, et al. Study on the feasibility of using monolithic catalyst in the in situ catalytic biomass pyrolysis for syngas production[J]. Waste Management, 2021, 120: 10-15. |
13 | Ren S J, Lei H W, Wang L, et al. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts[J]. RSC Advances, 2014, 4(21): 10731-10737. |
14 | Wang K G, Kim K H, Brown R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735. |
15 | Kawamoto H, Saito S, Hatanaka W, et al. Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts[J]. Journal of Wood Science, 2007, 53(2): 127-133. |
16 | Kudo S, Zhou Z W, Norinaga K, et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chemistry, 2011, 13(11): 3306-3311. |
17 | 张智博, 董长青, 叶小宁, 等. 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮[J]. 化工学报, 2014, 65(3): 912-920. |
Zhang Z B, Dong C Q, Ye X N, et al. Preparation of levoglucosenone by catalytic pyrolysis of cellulose over solid phosphoric acid[J]. CIESC Journal, 2014, 65(3): 912-920. | |
18 | Kudo S, Goto N, Sperry J, et al. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1132-1140. |
19 | Nieva M L, Volpe M A, Moyano E L. Catalytic and catalytic free process for cellulose conversion: fast pyrolysis and microwave induced pyrolysis studies[J]. Cellulose, 2015, 22(1): 215-228. |
20 | Sui X W, Wang Z, Liao B, et al. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature[J]. Bioresource Technology, 2012, 103(1): 466-469. |
21 | Shaik S M, Sharratt P N, Tan R B H. Influence of selected mineral acids and alkalis on cellulose pyrolysis pathways and anhydrosaccharide formation[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 234-242. |
22 | Dobele G, Rossinskaja G, Telysheva G, et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49(1/2): 307-317. |
23 | Halpern Y, Riffer R, Broido A. Levoglucosenone (1, 6-anhydro-3, 4-dideoxy-Δ3-β-D-pyranosen-2-one). Major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates[J]. The Journal of Organic Chemistry, 1973, 38(2): 204-209. |
24 | Ohnishi A, Kato K, Takagi E. Curie-point pyrolysis of cellulose[J]. Polymer Journal, 1975, 7(4): 431-437. |
25 | 陆强, 朱锡锋. 利用固体超强酸催化热解纤维素制备左旋葡萄糖酮[J]. 燃料化学学报, 2011, 39(6): 425-431. |
Lu Q, Zhu X F. Production of levoglucosenone from pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431. | |
26 | Mullen C A, Boateng A A. Catalytic pyrolysis-GC/MS of lignin from several sources[J]. Fuel Processing Technology, 2010, 91(11): 1446-1458. |
27 | Lu Q, Hu B, Zhang Z X, et al. Mechanism of cellulose fast pyrolysis: the role of characteristic chain ends and dehydrated units[J]. Combustion and Flame, 2018, 198: 267-277. |
28 | Kawamoto H. Reactions and molecular mechanisms of cellulose pyrolysis[J]. Mokuzai Gakkaishi, 2015, 61(1): 1-24. |
29 | Easton M W, Nash J J, Kenttämaa H I. Dehydration pathways for glucose and cellobiose during fast pyrolysis[J]. The Journal of Physical Chemistry A, 2018, 122(41): 8071-8085. |
30 | Shafizadeh F, Furneaux R H, Stevenson T T, et al. Acid-catalyzed pyrolytic synthesis and decomposition of 1,4:3,6-dianhydro-α-D-glucopyranose[J]. Carbohydrate Research, 1978, 61(1): 519-528. |
31 | 王树荣, 郑赟, 骆仲泱, 等. 生物质组分热裂解动力学研究[J]. 浙江大学学报(工学版), 2007, 41(4): 585-588, 602. |
Wang S R, Zheng Y, Luo Z Y, et al. Kinetic study on pyrolysis of biomass components[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(4): 585-588, 602. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 432
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 393
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||