1 |
Masso A H, Rudd D F. The synthesis of system designs (Ⅱ): Heuristic structuring[J]. AIChE Journal, 1969, 15(1): 10-17.
|
2 |
Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration (Ⅰ): Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164.
|
3 |
Yee T F, Grossmann I E. Simultaneous optimization models for heat integration (Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
|
4 |
Pavão L V, Costa C B B, Ravagnani M A S S. An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573.
|
5 |
Pavão L V, Costa C B B, Ravagnani M A S S. A new stage-wise superstructure for heat exchanger network synthesis considering substages, sub-splits and cross flows[J]. Applied Thermal Engineering, 2018, 143: 719-735.
|
6 |
Zamora J M, Hidalgo-Muñoz M G, Pedroza-Robles L E, et al. Optimization and utilities relocation approach for the improvement of heat exchanger network designs[J]. Chemical Engineering Research and Design, 2020, 156: 209-225.
|
7 |
Xiao Y, Kayange H A, Cui G M. Heat integration of energy system using an integrated node-wise non-structural model with uniform distribution strategy[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119497.
|
8 |
徐玥, 崔国民. 基于节点配置策略的有分流换热网络优化性能探析[J]. 化工进展, 2021, 40(7): 3608-3616.
|
|
Xu Y, Cui G M. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616.
|
9 |
Dolan W B, Cummings P T, LeVan M D. Process optimization via simulated annealing: application to network design[J]. AIChE Journal, 1989, 35(5): 725-736.
|
10 |
Yerramsetty K M, Murty C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers & Chemical Engineering, 2008, 32(8): 1861-1876.
|
11 |
Silva A P, Ravagnani M A S S, Biscaia E C. Particle swarm optimisation in heat exchanger network synthesis including detailed equipment design[J]. Computer Aided Chemical Engineering, 2008, 25: 713-718.
|
12 |
Biyanto T R, Gonawan E K, Nugroho G, et al. Heat exchanger network retrofit throughout overall heat transfer coefficient by using genetic algorithm[J]. Applied Thermal Engineering, 2016, 94: 274-281.
|
13 |
肖媛, 崔国民, 李帅龙. 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12): 5140-5147.
|
|
Xiao Y, Cui G M, Li S L. A novel random walk algorithm with compulsive evolution for global optimization of heat exchanger networks[J]. CIESC Journal, 2016, 67(12): 5140-5147.
|
14 |
Zhang S, Luo Y Q, Ma Y J, et al. Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm[J]. Energy, 2018, 162: 1139-1157.
|
15 |
Patel J L, Rana P B, Lalwani D I. Optimization of five stage cantilever beam design and three stage heat exchanger design using amended differential evolution algorithm[J]. Materials Today: Proceedings, 2020, 26: 1977-1981.
|
16 |
Silva G P, Miranda C B, Carvalho E P, et al. A simultaneous approach for the synthesis of multiperiod heat exchanger network using particle swarm optimization[J]. The Canadian Journal of Chemical Engineering, 2018, 96(5): 1142-1155.
|
17 |
Pavão L V, Costa C B B, Ravagnani M A S S, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. AIChE Journal, 2017, 63(5): 1582-1601.
|
18 |
Aguitoni M C, Pavão L V, Ravagnani M A S S. Heat exchanger network synthesis combining simulated annealing and differential evolution[J]. Energy, 2019, 181: 654-664.
|
19 |
Thuy N T P, Pendyala R, Rahmanian N, et al. Heat exchanger network optimization by differential evolution method[J]. Applied Mechanics and Materials, 2014, 564: 292-297.
|
20 |
王世豪, 田一彤, 李绍军. 基于双层优化策略的柔性换热网络同步优化方法[J]. 高校化学工程学报, 2021, 35(5): 905-914.
|
|
Wang S H, Tian Y T, Li S J. A simultaneous synthesis based on a bi-level optimization strategy for flexible heat exchanger network[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(5): 905-914.
|
21 |
陈帅, 罗娜. 基于抽样平均近似的双层改进粒子群算法的无分流换热网络综合[J]. 高校化学工程学报, 2018, 32(3): 620-627.
|
|
Chen S, Luo N. Sample average approximation based double-layer improved particle swarm optimization for heat exchanger network synthesis without split streams[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 620-627.
|
22 |
Rathjens M, Fieg G. A novel hybrid strategy for cost-optimal heat exchanger network synthesis suited for large-scale problems[J]. Applied Thermal Engineering, 2020, 167: 114771.
|
23 |
Feyli B, Soltani H, Hajimohammadi R, et al. A reliable approach for heat exchanger networks synthesis with stream splitting by coupling genetic algorithm with modified quasi-linear programming method[J]. Chemical Engineering Science, 2022, 248: 117140.
|
24 |
陈子禾, 崔国民, 徐玥, 等. 基于控制参数动态协调策略的换热网络优化研究[J]. 工程热物理学报, 2020, 41(4): 957-965.
|
|
Chen Z H, Cui G M, Xu Y, et al. Study of heat exchanger network optimization based on dynamic coordination strategy of control parameters[J]. Journal of Engineering Thermophysics, 2020, 41(4): 957-965.
|
25 |
孙涛, 崔国民, 陈家星. 一种大步长激励的结构进化策略应用于换热网络优化[J]. 化工学报, 2018, 69(7): 3135-3148.
|
|
Sun T, Cui G M, Chen J X. A structure evolution strategy motivated by large step size for optimization of heat exchanger network[J]. CIESC Journal, 2018, 69(7): 3135-3148.
|
26 |
鲍中凯, 崔国民, 陈家星. 采用结构保护策略的强制进化随机游走算法优化换热网络[J]. 化工学报, 2017, 68(9): 3522-3531.
|
|
Bao Z K, Cui G M, Chen J X. Optimization of heat exchanger network by random walk algorithm with compulsive evolution with structure-protection strategy[J]. CIESC Journal, 2017, 68(9): 3522-3531.
|
27 |
韩正恒, 崔国民, 肖媛. 采用结构融合策略优化换热网络[J]. 化工学报, 2019, 70(12): 4730-4740.
|
|
Han Z H, Cui G M, Xiao Y. Optimization of heat exchanger network by structure-fusion strategy[J]. CIESC Journal, 2019, 70(12): 4730-4740.
|
28 |
韩正恒, 崔国民, 赵倩倩, 等. RWCE算法中采用单元重构策略激励换热网络结构优化[J]. 化工学报, 2021, 72(6): 3316-3327.
|
|
Han Z H, Cui G M, Zhao Q Q, et al. Impelling structural optimization of heat exchanger network by unit-reconfiguration strategy in RWCE algorithm[J]. CIESC Journal, 2021, 72(6): 3316-3327.
|
29 |
Pavão L V, Costa C B B, Ravagnani M A S S, et al. Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach[J]. Applied Energy, 2017, 203: 304-320.
|
30 |
Linnhoff B, Ahmad S. Cost optimum exchanger networks (1): Minimum energy and capital using simple methods for capital cost[J]. Computer Chemical Engineering. 1990, 14: 729-750.
|
31 |
Fieg G, Luo X, Jeżowski J. A monogenetic algorithm for optimal design of large-scale heat exchanger networks[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11/12): 1506-1516.
|
32 |
霍兆义, 尹洪超, 赵亮. 有分流换热网络同步综合[J]. 大连理工大学学报, 2013, 53(1): 45-50.
|
|
Huo Z Y, Yin H C, Zhao L. Simultaneous synthesis of heat exchanger network with stream splits[J]. Journal of Dalian University of Technology, 2013, 53(1): 45-50.
|
33 |
鲍中凯, 崔国民, 曹冲, 等. 基于公用工程内置策略的换热网络优化[J]. 计算物理, 2019, 36(6): 707-718.
|
|
Bao Z K, Cui G M, Cao C, et al. Heat exchanger network optimization based on inner utility placement strategy[J]. Chinese Journal of Computational Physics, 2019, 36(6): 707-718.
|
34 |
Huo Z Y, Zhao L, Yin H C, et al. Simultaneous synthesis of structural‐constrained heat exchanger networks with and without stream splits[J]. The Canadian Journal of Chemical Engineering, 2013, 91(5): 830-842.
|
35 |
Bao Z K, Cui G M, Chen J X, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis[J]. Energy, 2018, 152: 694-708.
|
36 |
Zhang C W, Cui G M, Chen S. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks[J]. Applied Thermal Engineering, 2016, 107: 565-574.
|
37 |
Nemet A, Isafiade A J, Klemeš J J, et al. Two-step MILP/MINLP approach for the synthesis of large-scale HENs[J]. Chemical Engineering Science, 2019, 197: 432-448.
|