CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3099-3108.DOI: 10.11949/0438-1157.20220108
• Separation engineering • Previous Articles Next Articles
Peng WEI(),Jun CHEN(),Zhiguo WANG,Fei LIU
Received:
2022-01-19
Revised:
2022-03-19
Online:
2022-08-01
Published:
2022-07-05
Contact:
Jun CHEN
通讯作者:
陈珺
作者简介:
魏朋(1995—),男,硕士研究生,基金资助:
CLC Number:
Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard[J]. CIESC Journal, 2022, 73(7): 3099-3108.
魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
Add to citation manager EndNote|Ris|BibTeX
模型参数 | 数值 | 初始工艺参数 | 数值 | ||
---|---|---|---|---|---|
柱分布结构 | 2-2-2-2 | A的进料浓度 | 0.5 g/ml | ||
组分数 | 2 | B的进料浓度 | 0.5 g/ml | ||
柱长 | 53.6 cm | 进料液流量 | 0.0200 ml/s | ||
柱直径 | 2.6 cm | 洗脱液流量 | 0.0414 ml/s | ||
空隙率 | 0.38 | 提取液流量 | 0.0348 ml/s | ||
轴向扩散系数 | 0.0381 cm2/s | 提余液流量 | 0.0266 ml/s | ||
A的亨利系数 | 0.54 | 循环液流量 | 0.0981 ml/s | ||
B的亨利系数 | 0.28 | 切换时间 | 1552 s |
Table 1 Model parameters and process parameters of the simulated moving bed
模型参数 | 数值 | 初始工艺参数 | 数值 | ||
---|---|---|---|---|---|
柱分布结构 | 2-2-2-2 | A的进料浓度 | 0.5 g/ml | ||
组分数 | 2 | B的进料浓度 | 0.5 g/ml | ||
柱长 | 53.6 cm | 进料液流量 | 0.0200 ml/s | ||
柱直径 | 2.6 cm | 洗脱液流量 | 0.0414 ml/s | ||
空隙率 | 0.38 | 提取液流量 | 0.0348 ml/s | ||
轴向扩散系数 | 0.0381 cm2/s | 提余液流量 | 0.0266 ml/s | ||
A的亨利系数 | 0.54 | 循环液流量 | 0.0981 ml/s | ||
B的亨利系数 | 0.28 | 切换时间 | 1552 s |
Run | Pu_A/% | Pu_B/% | Re_A/% | Re_B/% | ||
---|---|---|---|---|---|---|
1 | 0.2850 | 0.5489 | 97.61 | 95.10 | 90.57 | 96.50 |
2 | 0.2900 | 0.5539 | 98.21 | 94.07 | 89.42 | 97.44 |
3 | 0.2950 | 0.5589 | 98.68 | 92.93 | 88.17 | 98.26 |
4 | 0.3000 | 0.5639 | 99.07 | 91.77 | 86.74 | 98.89 |
5 | 0.3050 | 0.5689 | 99.35 | 90.56 | 85.22 | 99.40 |
6 | 0.3100 | 0.5739 | 99.56 | 89.16 | 83.72 | 99.90 |
24 | 0.4000 | 0.6639 | 99.90 | 67.17 | 51.04 | 99.90 |
25 | 0.4050 | 0.6689 | 99.90 | 66.37 | 49.17 | 99.91 |
26 | 0.4100 | 0.6739 | 99.91 | 65.62 | 47.31 | 99.93 |
Table 2 The performance parameters obtained when the simulated moving bed runs at the new process point
Run | Pu_A/% | Pu_B/% | Re_A/% | Re_B/% | ||
---|---|---|---|---|---|---|
1 | 0.2850 | 0.5489 | 97.61 | 95.10 | 90.57 | 96.50 |
2 | 0.2900 | 0.5539 | 98.21 | 94.07 | 89.42 | 97.44 |
3 | 0.2950 | 0.5589 | 98.68 | 92.93 | 88.17 | 98.26 |
4 | 0.3000 | 0.5639 | 99.07 | 91.77 | 86.74 | 98.89 |
5 | 0.3050 | 0.5689 | 99.35 | 90.56 | 85.22 | 99.40 |
6 | 0.3100 | 0.5739 | 99.56 | 89.16 | 83.72 | 99.90 |
24 | 0.4000 | 0.6639 | 99.90 | 67.17 | 51.04 | 99.90 |
25 | 0.4050 | 0.6689 | 99.90 | 66.37 | 49.17 | 99.91 |
26 | 0.4100 | 0.6739 | 99.91 | 65.62 | 47.31 | 99.93 |
Run | 纯度阈值/% | 纯度/% | 回收率/% |
---|---|---|---|
1 | 98.00 | 98.02 | 69.91 |
2 | 98.10 | 98.11 | 69.21 |
3 | 98.20 | 98.23 | 68.26 |
4 | 98.30 | 98.31 | 67.56 |
5 | 98.40 | 98.42 | 66.61 |
6 | 98.50 | 98.51 | 65.91 |
7 | 98.60 | 98.61 | 64.96 |
15 | 99.40 | 99.41 | 53.92 |
16 | 99.50 | 99.50 | 51.34 |
17 | 99.60 | 99.60 | 47.37 |
Table 3 Performance parameters of raffinate products after partial-discard under different purity thresholds
Run | 纯度阈值/% | 纯度/% | 回收率/% |
---|---|---|---|
1 | 98.00 | 98.02 | 69.91 |
2 | 98.10 | 98.11 | 69.21 |
3 | 98.20 | 98.23 | 68.26 |
4 | 98.30 | 98.31 | 67.56 |
5 | 98.40 | 98.42 | 66.61 |
6 | 98.50 | 98.51 | 65.91 |
7 | 98.60 | 98.61 | 64.96 |
15 | 99.40 | 99.41 | 53.92 |
16 | 99.50 | 99.50 | 51.34 |
17 | 99.60 | 99.60 | 47.37 |
1 | Kim K M, Lee J W, Kim S, et al. Advanced operating strategies to extend the applications of simulated moving bed chromatography[J]. Chemical Engineering & Technology, 2017, 40(12): 2163-2178. |
2 | Broughton D B, Gerhold C G. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets: US 2985589[P]. 1961-5-23. |
3 | Aniceto J P S, Silva C M. Simulated moving bed strategies and designs: from established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73. |
4 | Faria R P, Rodrigues A E. Instrumental aspects of simulated moving bed chromatography[J]. Journal of Chromatography A, 2015, 1421: 82-102. |
5 | Lee J, Shin N C, Lim Y, et al. Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation[J]. Korean Journal of Chemical Engineering, 2010, 27(2): 609-618. |
6 | van Duc Long N, Le T H, Kim J I, et al. Separation of D-psicose and D-fructose using simulated moving bed chromatography[J]. Journal of Separation Science, 2009, 32(11): 1987-1995. |
7 | Ribeiro A E, Gomes P S, Pais L S, et al. Chiral separation of ketoprofen enantiomers by preparative and simulated moving bed chromatography[J]. Separation Science and Technology, 2011, 46(11): 1726-1739. |
8 | Knutson H K, Holmqvist A, Andersson N, et al. Robust multi-objective optimization of chromatographic rare earth element separation[J]. Advances in Chemical Engineering and Science, 2017, 7(4): 477-493. |
9 | Minceva M, Rodrigues A E. Two-level optimization of an existing SMB for p-xylene separation[J]. Computers & Chemical Engineering, 2005, 29(10): 2215-2228. |
10 | 胡蓉, 杨明磊, 钱锋. 基于多目标教学优化算法在二甲苯吸附分离过程优化中的应用[J]. 化工学报, 2015, 66(1): 326-332. |
Hu R, Yang M L, Qian F. Optimization of xylene adsorption separation process based on multi-objective teaching-learning-based optimization algorithm[J]. CIESC Journal, 2015, 66(1): 326-332. | |
11 | Matos J, Faria R P V, Nogueira I B R, et al. Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new Parallel PSO variant[J]. Computers & Chemical Engineering, 2019, 123: 344-356. |
12 | Yu W F, Hidajat K, Ray A K. Optimization of reactive simulated moving bed and Varicol systems for hydrolysis of methyl acetate[J]. Chemical Engineering Journal, 2005, 112(1/2/3): 57-72. |
13 | Zhang Z Y, Mazzotti M, Morbidelli M. PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval[J]. Journal of Chromatography A, 2003, 1006(1/2): 87-99. |
14 | Schramm H, Kienle A, Kaspereit M, et al. Improved operation of simulated moving bed processes through cyclic modulation of feed flow and feed concentration[J]. Chemical Engineering Science, 2003, 58(23/24): 5217-5227. |
15 | Katsuo S, Mazzotti M. Intermittent simulated moving bed chromatography: 2. Separation of Tröger’s base enantiomers[J]. Journal of Chromatography A, 2010, 1217(18): 3067-3075. |
16 | Shen B, Chen M J, Jiang H L, et al. Modeling study on a three-zone simulated moving bed without zone I[J]. Separation Science and Technology, 2011, 46(5): 695-701. |
17 | Bae Y S, Lee C H. Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography[J]. Journal of Chromatography A, 2006, 1122(1/2): 161-173. |
18 | Keßler L C, Seidel-Morgenstern A. Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams[J]. Journal of Chromatography A, 2008, 1207(1/2): 55-71. |
19 | Kim K M, Lee H H, Lee C H. Improved performance of a simulated moving bed process by a recycling method in the partial-discard strategy[J]. Industrial & Engineering Chemistry Research, 2012, 51(29): 9835-9849. |
20 | Chung J W, Kim K M, Yoon T U, et al. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography[J]. Journal of Chromatography A, 2017, 1529: 72-80. |
21 | Han H S, Kim K M, Han K W, et al. Total-recycling partial-discard strategy for improved performance of simulated moving-bed chromatography[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 226-235. |
22 | Kim K M, Han K W, Kim S I, et al. Simulated moving bed with a product column for improving the separation performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 328-338. |
23 | Mazzotti M, Storti G, Morbidelli M. Optimal operation of simulated moving bed units for nonlinear chromatographic separations[J]. Journal of Chromatography A, 1997, 769(1): 3-24. |
24 | Mazzotti M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm[J]. Journal of Chromatography A, 2006, 1126(1/2): 311-322. |
25 | Yao H M, Tian Y C, Tadé M O. Using wavelets for solving SMB separation process models[J]. Industrial & Engineering Chemistry Research, 2008, 47(15): 5585-5593. |
26 | Minceva M, Rodrigues A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461. |
27 | Klatt K U, Hanisch F, Dünnebier G. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose[J]. Journal of Process Control, 2002, 12(2): 203-219. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[4] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[5] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[6] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[7] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[8] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[9] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[10] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
[11] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[12] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[13] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[14] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
[15] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||