CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3090-3098.DOI: 10.11949/0438-1157.20220121
• Separation engineering • Previous Articles Next Articles
Huiying LIU1(),Shengkun JIA1,2(),Yiqing LUO1,2,Xigang YUAN1,2,3()
Received:
2022-01-21
Revised:
2022-03-01
Online:
2022-08-01
Published:
2022-07-05
Contact:
Shengkun JIA,Xigang YUAN
刘会影1(),贾胜坤1,2(),罗祎青1,2,袁希钢1,2,3()
通讯作者:
贾胜坤,袁希钢
作者简介:
刘会影(1997—),女,硕士研究生,基金资助:
CLC Number:
Huiying LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Influence of vapor feed on optimal design of dividing wall column[J]. CIESC Journal, 2022, 73(7): 3090-3098.
刘会影, 贾胜坤, 罗祎青, 袁希钢. 气相进料对隔板精馏塔优化设计的影响[J]. 化工学报, 2022, 73(7): 3090-3098.
Add to citation manager EndNote|Ris|BibTeX
变量 | 变量值 |
---|---|
进料组成/%(mol) | A:0.3;B:0.3;C:0.4 |
进料压力/kPa | 101.325 |
进料气相分率γf | 0/1 |
产品纯度要求/%(mol) | A:0.98; B:0.98; C:0.98 |
Table 1 Feed condition and product request
变量 | 变量值 |
---|---|
进料组成/%(mol) | A:0.3;B:0.3;C:0.4 |
进料压力/kPa | 101.325 |
进料气相分率γf | 0/1 |
产品纯度要求/%(mol) | A:0.98; B:0.98; C:0.98 |
变量 | 工况a | 工况b | 工况c |
---|---|---|---|
进料气相分率γf | 0 | 1 | 1 |
结构变量 | |||
塔径D/m | 3.079 | 3.079 | 3.491 |
隔板位置参数β | 0.6376 | 0.6376 | 0.8221 |
各塔段塔板数 | |||
Ⅰ | 5 | 5 | 8 |
Ⅱ | 11 | 11 | 13 |
Ⅲ | 10 | 10 | 11 |
Ⅳ | 10 | 10 | 8 |
Ⅴ | 11 | 11 | 10 |
Ⅵ | 11 | 11 | 10 |
操作变量 | |||
进料流量F/(kmol/h) | 500 | 257 | 500 |
塔顶压力P/kPa | 32.95 | 32.95 | 52.85 |
回流比RR | 2.679 | 6.25 | 4.942 |
侧采分率Sf/%(mol) | 0.5806 | 0.3148 | 0.5602 |
再沸比BR | 2.145 | 1.959 | 1.267 |
液相分割比RL/%(mol) | 0.3285 | 0.4651 | 0.622 |
气相分割比RV/%(mol) | 0.5911 | 0.1281 | 0.4519 |
费用 | |||
设备费用/104 USD | 142.7 | 133.9 | 153.2 |
操作费用/104 USD | 109.3 | 54.79 | 69.18 |
TAC/104 USD | 156.9 | 99.43 | 120.3 |
(TAC/F)/(104 USD/kmol) | 0.3138 | 0.3869 | 0.2405 |
Table 2 Design variables and related costs with different feed conditions
变量 | 工况a | 工况b | 工况c |
---|---|---|---|
进料气相分率γf | 0 | 1 | 1 |
结构变量 | |||
塔径D/m | 3.079 | 3.079 | 3.491 |
隔板位置参数β | 0.6376 | 0.6376 | 0.8221 |
各塔段塔板数 | |||
Ⅰ | 5 | 5 | 8 |
Ⅱ | 11 | 11 | 13 |
Ⅲ | 10 | 10 | 11 |
Ⅳ | 10 | 10 | 8 |
Ⅴ | 11 | 11 | 10 |
Ⅵ | 11 | 11 | 10 |
操作变量 | |||
进料流量F/(kmol/h) | 500 | 257 | 500 |
塔顶压力P/kPa | 32.95 | 32.95 | 52.85 |
回流比RR | 2.679 | 6.25 | 4.942 |
侧采分率Sf/%(mol) | 0.5806 | 0.3148 | 0.5602 |
再沸比BR | 2.145 | 1.959 | 1.267 |
液相分割比RL/%(mol) | 0.3285 | 0.4651 | 0.622 |
气相分割比RV/%(mol) | 0.5911 | 0.1281 | 0.4519 |
费用 | |||
设备费用/104 USD | 142.7 | 133.9 | 153.2 |
操作费用/104 USD | 109.3 | 54.79 | 69.18 |
TAC/104 USD | 156.9 | 99.43 | 120.3 |
(TAC/F)/(104 USD/kmol) | 0.3138 | 0.3869 | 0.2405 |
1 | Kaibel G. Distillation columns with vertical partitions[J]. Chemical Engineering & Technology - CET, 1987, 10(1): 92-98. |
2 | Fidkowski Z, Królikowski L. Minimum energy requirements of thermally coupled distillation systems[J]. AIChE Journal, 1987, 33(4): 643-653. |
3 | Ling H, Cai Z, Wu H, et al. Remixing control for divided-wall columns[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12694-12705. |
4 | Hernández S, Pereira-Pech S, Jiménez A, et al. Energy efficiency of an indirect thermally coupled distillation sequence[J]. The Canadian Journal of Chemical Engineering, 2008, 81(5): 1087-1091. |
5 | Amminudin K A, Smith R. Design and optimization of fully thermally coupled distillation columns[J]. Chemical Engineering Research and Design, 2001, 79(7): 716-724. |
6 | Hernández S, Jiménez A. Design of energy-efficient Petlyuk systems[J]. Computers & Chemical Engineering, 1999, 23(8): 1005-1010. |
7 | Ho Y C, Ward J D, Yu C C. Quantifying potential energy savings of divided wall columns based on degree of remixing[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1473-1487. |
8 | Maralani L T, Yuan X G, Luo Y Q, et al. Numerical investigation on effect of vapor split ratio to performance and operability for dividing wall column[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 72-78. |
9 | 龚超, 余爱平, 罗祎青, 等. 完全能量耦合精馏塔的设计、模拟与优化[J]. 化工学报, 2012, 63(1): 177-184. |
Gong C, Yu A P, Luo Y Q, et al. Design, simulation and optimization of fully thermally coupled distillation column[J]. CIESC Journal, 2012, 63(1): 177-184. | |
10 | Kim Y H. Rigorous design of extended fully thermally coupled distillation columns[J]. Chemical Engineering Journal, 2002, 89(1/2/3): 89-99. |
11 | Amminudin K A, Smith R, Thong D Y C, et al. Design and optimization of fully thermally coupled distillation columns(Ⅰ): Preliminary design and optimization methodology[J]. Chemical Engineering Research and Design, 2001, 79(7): 701-715. |
12 | Wenzel S, Röhm H J. Design of complex distillation columns by overall-cost optimization[J]. Chemical Engineering & Technology, 2004, 27(5): 484-490. |
13 | 牟祖霖, 盖晓龙, 袁希钢, 等. 三组分精馏隔板塔的操作柔性模拟与分析[J]. 化工学报, 2016, 67(2): 573-579. |
Mu Z L, Ge X L, Yuan X G, et al. Simulation and analysis of operation flexibility of divided wall column for ternary distillation[J]. CIESC Journal, 2016, 67(2): 573-579. | |
14 | Ge X L, Ao C, Yuan X G, et al. Investigation of the effect of the vapor split ratio decision in design on operability for DWC by numerical simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13383-13390. |
15 | 敖琛, 袁希钢, 罗祎青, 等. 进料组成改变对隔板塔经济性影响的模拟[J]. 化学工业与工程, 2016, 33(6): 74-79. |
Ao C, Yuan X G, Luo Y Q, et al. Numerical simulation for economical behavior of DWC in case of changes in feed composition[J]. Chemical Industry and Engineering, 2016, 33(6): 74-79. | |
16 | 朱怀工, 王燕, 张敏卿. 进料性质对立式隔板塔操作特性的影响[J]. 化工进展, 2009, 28(4): 579-583. |
Zhu H G, Wang Y, Zhang M Q. Influence of feed property on the operation of dividing wall column[J]. Chemical Industry and Engineering Progress, 2009, 28(4): 579-583. | |
17 | 王维德, 黄颖芬, 晋正茂, 等. 进料热状况对精馏能耗影响[J]. 华侨大学学报(自然科学版), 2008, 29(2): 260-262. |
Wang W D, Huang Y F, Jin Z M, et al. Effect of thermal conditions of feed on energy consumption of distillation[J]. Journal of Huaqiao University (Natural Science), 2008, 29(2): 260-262. | |
18 | Olujić, Dejanović I, Kaibel B, et al. Dimensioning multipartition dividing wall columns[J]. Chemical Engineering & Technology, 2012, 35(8): 1392-1404. |
19 | Kang K J, Harvianto G R, Lee M. Hydraulic driven active vapor distributor for enhancing operability of a dividing wall column[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6493-6498. |
20 | Li F, Luo Y Q, Yuan X G. Equation-oriented optimization of a distillation column considering stage hydraulics[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13657-13668. |
21 | Dai X, Ye Q, Qin J W, et al. Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer[J]. Chemical Engineering & Processing: Process Intensification, 2016, 100: 49-64. |
22 | Qian X, Jia S K, Huang K J, et al. Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods[J]. Journal of Cleaner Production, 2020, 273:123041. |
23 | Sun L Y, Wang Q Y, Li L M, et al. Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2014, 53(19):8120-8131. |
24 | Quirante N, Javaloyes J, Caballero J A. Rigorous design of distillation columns using surrogate models based on Kriging interpolation[J]. AIChE Journal, 2015, 61(7): 2169-2187. |
25 | 马英杰. 采用虚拟瞬态连续性模型优化复杂精馏系统[D]. 天津: 天津大学, 2017. |
Ma Y J. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[D]. Tianjin: Tianjin University, 2017. | |
26 | Ma Y J, Luo Y Q, Yuan X G. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6266-6274. |
27 | Bennett D L, Agrawal R, Cook P J. New pressure drop correlation for sieve tray distillation columns[J]. AIChE Journal, 1983, 29(3): 434-442. |
28 | Dejanović I, Matijašević L, Jansen H, et al. Designing a packed dividing wall column for an aromatics processing plant[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5680-5692. |
29 | Górak A, Olujić Z. Distillation: Equipment and Processes[M]. London: Academic Press, 2014: 307-315. |
30 | Dowling A W, Biegler L T. Rigorous optimization-based synthesis of distillation cascades without integer variables[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014: 55-60. |
31 | Dowling A W, Biegler L T. A framework for efficient large scale equation-oriented flowsheet optimization[J]. Computers & Chemical Engineering, 2015, 72: 3-20. |
32 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill Book Company, 1988: 30-216. |
33 | Long H, Clark J, Benyounes H, et al. Optimal design and economic evaluation of dividing-wall columns[J]. Chemical Engineering & Technology, 2016, 39(6): 1077-1086. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[8] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[9] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[14] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[15] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||