CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3576-3585.DOI: 10.11949/0438-1157.20220250
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Lei WANG1,2(), Yong JIANG1,2, Dazhong ZHONG1,2, Jiayuan LI3, Genyan HAO1,2, Qiang ZHAO1,2(), Jinping LI1,2()
Received:
2022-02-24
Revised:
2022-05-22
Online:
2022-09-06
Published:
2022-08-05
Contact:
Qiang ZHAO, Jinping LI
王磊1,2(), 蒋勇1,2, 钟达忠1,2, 李佳元3, 郝根彦1,2, 赵强1,2(), 李晋平1,2()
通讯作者:
赵强,李晋平
作者简介:
王磊(1996—),男,硕士研究生,wanglei0533@link.tyut.cn
基金资助:
CLC Number:
Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol[J]. CIESC Journal, 2022, 73(8): 3576-3585.
王磊, 蒋勇, 钟达忠, 李佳元, 郝根彦, 赵强, 李晋平. 碳化的MOF用于电催化还原二氧化碳制备乙烯和乙醇[J]. 化工学报, 2022, 73(8): 3576-3585.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 Time and current density of potentiostatic -1.1 V reduction; XRD patterns of Cu-BTC-300℃ before and after reduction; TEM of Cu-BTC-300℃ after reduction
Fig.8 CV curves collected in N2-saturated 0.1 mol·L-1 KHCO3 with different scan rates and the corresponding charging current density difference vs scan rate plots of Cu-BTC-X[Double-layer capacitance (Cdl) is equal to half of the linear slope]
Fig.9 XRD patterns, SEM, FE of Cu-BTC-300℃ after agitator treating of H2SO4, and comparison of current density before and after agitator treating of H2SO4
1 | Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products — closing the loop[J]. Chemical Society Reviews, 2014, 43(23): 7995-8048. |
2 | Kagawa S, Suh S, Hubacek K, et al. CO2 emission clusters within global supply chain networks: implications for climate change mitigation[J]. Global Environmental Change, 2015, 35: 486-496. |
3 | Markewitz P, Kuckshinrichs W, Leitner W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 [J]. Energy & Environmental Science, 2012, 5(6): 7281. |
4 | Atsonios K, Panopoulos K D, Kakaras E. Thermocatalytic CO2 hydrogenation for methanol and ethanol production: process improvements[J]. International Journal of Hydrogen Energy, 2016, 41(2): 792-806. |
5 | Fu Y H, Sun D R, Chen Y J, et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angewandte Chemie International Edition, 2012, 51(14): 3364-3367. |
6 | Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. |
7 | Costentin C, Robert M, Savéant J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436. |
8 | Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
9 | Gu Z X, Shen H, Shang L M, et al. Nanostructured copper-based electrocatalysts for CO2 reduction[J]. Small Methods, 2018, 2(11): 1800121. |
10 | Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
11 | El-Zahab B, Donnelly D, Wang P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes[J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514. |
12 | Bhatia S K, Bhatia R K, Jeon J M, et al. Carbon dioxide capture and bioenergy production using biological system — a review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 143-158. |
13 | Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nature Communications, 2014, 5: 3242. |
14 | Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123. |
15 | Luc W, Collins C, Wang S W, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(5): 1885-1893. |
16 | Lv W X, Zhou J, Bei J J, et al. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate[J]. Applied Surface Science, 2017, 393: 191-196. |
17 | Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products[J]. Nature Catalysis, 2018, 1(10): 748-755. |
18 | Zhong D Z, Zhao Z J, Zhao Q, et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols[J]. Angewandte Chemie International Edition, 2021, 60(9): 4879-4885. |
19 | Zhao K, Quan X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges[J]. ACS Catalysis, 2021, 11(4): 2076-2097. |
20 | Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258. |
21 | Zhou Y S, Che F L, Liu M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons[J]. Nature Chemistry, 2018, 10(9): 974-980. |
22 | Liang Z Q, Zhuang T T, Seifitokaldani A, et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2 [J]. Nature Communications, 2018, 9: 3828. |
23 | Zhang H G, Li J Z, Tan Q, et al. Metal-organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: progress, challenges, and perspectives[J]. Chemistry - A European Journal, 2018, 24(69): 18137-18157. |
24 | Li X F, Zhu Q L. MOF-based materials for photo- and electrocatalytic CO2 reduction[J]. EnergyChem, 2020, 2(3): 100033. |
25 | Hu H, Han L, Yu M Z, et al. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction[J]. Energy & Environmental Science, 2016, 9(1): 107-111. |
26 | Yang L, Gao M G, Dai B, et al. An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework[J]. Electrochimica Acta, 2016, 191: 813-820. |
27 | Zheng Y L, Cheng P, Xu J S, et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism[J]. Nanoscale, 2019, 11(11): 4911-4917. |
28 | Yao K L, Xia Y J, Li J, et al. Metal-organic framework derived copper catalysts for CO2 to ethylene conversion[J]. Journal of Materials Chemistry A, 2020, 8(22): 11117-11123. |
29 | Majidi L, Ahmadiparidari A, Shan N N, et al. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials[J]. Advanced Materials, 2021, 33(10): 2004393. |
30 | Zhang R R, Hu L, Bao S X, et al. Surface polarization enhancement: high catalytic performance of Cu/CuO x /C nanocomposites derived from Cu-BTC for CO oxidation[J]. Journal of Materials Chemistry A, 2016, 4(21): 8412-8420. |
31 | Kar A K, Srivastava R. Selective synthesis of Cu-Cu2O/C and CuO-Cu2O/C catalysts for Pd-free C-C, C-N coupling and oxidation reactions[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 576-589. |
32 | Yang F, Deng P L, Wang Q Y, et al. Metal-organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables[J]. Journal of Materials Chemistry A, 2020, 8(25): 12418-12423. |
33 | Zheng Y, Vasileff A, Zhou X L, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659. |
[1] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[2] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[6] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
[7] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[8] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
[9] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[10] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
[11] | Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation [J]. CIESC Journal, 2022, 73(4): 1585-1596. |
[12] | Lixia WANG, Zhaojie BI, Miaolei SHI, Chen WANG, Dongfang WANG, Qian LI. Effect of blending mode and ratio of UHMWPE/PEG on the entanglement behavior and properties of UHMWPE [J]. CIESC Journal, 2022, 73(2): 933-940. |
[13] | Xiaoyang YANG, Baofeng WANG, Xutao SONG, Fengling YANG, Fangqin CHENG. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal [J]. CIESC Journal, 2022, 73(11): 5211-5219. |
[14] | Bo ZHANG, Xiaofei CHEN, Siyao ZHAO, Xin ZHOU. Progress of ethane-selective adsorbents for efficient purification of ethylene [J]. CIESC Journal, 2022, 73(10): 4255-4267. |
[15] | GAO Shuaitao, LIU Xueke, ZHANG Li, LIU Fen, YU Jiang, SHANG Jianfeng, OU Tianxiong, ZHOU Zheng, CHEN Pingwen. Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2 [J]. CIESC Journal, 2021, 72(S1): 413-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||