CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1390-1398.DOI: 10.11949/0438-1157.20221365
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Feng WANG1,2(), Yu CHEN2, Hongyan PEI2, Dongdong LIU1,2, Jing ZHANG1,2(), Lixin ZHANG1,2()
Received:
2022-10-17
Revised:
2022-12-17
Online:
2023-04-19
Published:
2023-03-05
Contact:
Jing ZHANG, Lixin ZHANG
王锋1,2(), 陈钰2, 裴鸿艳2, 刘东东1,2, 张静1,2(), 张立新1,2()
通讯作者:
张静,张立新
作者简介:
王锋(1991—),男,博士研究生,445765487@qq.com
基金资助:
CLC Number:
Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives[J]. CIESC Journal, 2023, 74(3): 1390-1398.
王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398.
Add to citation manager EndNote|Ris|BibTeX
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.)① |
---|---|---|---|---|---|
5a | 4.0 | white solid | 185.2—185.9 | 75.65 | 340.1(340.1) |
5b | 4.0 | white solid | 188.2—189.0 | 78.25 | 354.1(354.1) |
5c | 3.5 | yellow solid | 184.6—185.2 | 76.52 | 368.1(368.1) |
5d | 5.0 | yellow oil | — | 70.26 | 352.2(352.1) |
5e | 5.0 | white solid | 189.6—190.1 | 72.24 | 370.1(370.1) |
Table 1 Physical data and ESI-MS results of compounds 5a—5e
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.)① |
---|---|---|---|---|---|
5a | 4.0 | white solid | 185.2—185.9 | 75.65 | 340.1(340.1) |
5b | 4.0 | white solid | 188.2—189.0 | 78.25 | 354.1(354.1) |
5c | 3.5 | yellow solid | 184.6—185.2 | 76.52 | 368.1(368.1) |
5d | 5.0 | yellow oil | — | 70.26 | 352.2(352.1) |
5e | 5.0 | white solid | 189.6—190.1 | 72.24 | 370.1(370.1) |
Compound | |
---|---|
5a | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 2.51 (s, 3H, CH3), 1.63—1.59 (m, 1H, CH), 1.18—1.11 (m, 2H, half-CH2CH2), 0.86—0.83 (m, 2H, half-CH2CH2) |
5b | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.38 (d, J = 8.5 Hz, 2H, Ph-2H), 2.80 (q, J = 7.3 Hz, 2H, CH2), 1.75—1.71 (m, 1H, CH), 1.17 (t, J = 7.3 Hz, 3H, CH3), 1.15—1.12 (m, 2H, half-CH2CH2), 0.87—0.84 (m, 2H, half-CH2CH2) |
5c | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.36 (d, J = 8.5 Hz, 2H, Ph-2H), 3.35—3.30 (m, 1H, CH), 1.74—1.70 (m, 1H, CH), 1.21[d, J = 6.8 Hz, 6H, (CH3)2], 1.17—1.14 (m, 2H, half-CH2CH2), 0.88—0.85 (m, 2H, half-CH2CH2) |
5d | 8.23 (d, J = 8.4 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 6.63 (dd, J = 16.8, 10.3 Hz, 1H, =CH), 6.48 (dd, J = 16.8, 1.6 Hz, 1H, CH), 5.78 (dd, J = 10.3, 1.6 Hz, 1H, =CH), 1.93—1.89 (m, 1H, CH), 1.21—1.18 (m, 2H, half-CH2CH2), 0.94—0.91 (m, 2H, half-CH2CH2) |
5e | 8.17 (d, J = 8.5 Hz, 2H, Ph-2H), 7.30 (d, J = 8.5 Hz, 2H, Ph-2H), 4.23 (q, J = 7.1 Hz, 2H, CH2), 2.83—2.78 (m, 1H, CH), 1.20 (t, J = 7.1 Hz, 3H, CH3), 1.19—1.16 (m, 2H, half-CH2CH2), 1.02—0.99 (m, 2H, half-CH2CH2) |
Table 2 1H NMR data of compounds 5a—5e
Compound | |
---|---|
5a | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 2.51 (s, 3H, CH3), 1.63—1.59 (m, 1H, CH), 1.18—1.11 (m, 2H, half-CH2CH2), 0.86—0.83 (m, 2H, half-CH2CH2) |
5b | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.38 (d, J = 8.5 Hz, 2H, Ph-2H), 2.80 (q, J = 7.3 Hz, 2H, CH2), 1.75—1.71 (m, 1H, CH), 1.17 (t, J = 7.3 Hz, 3H, CH3), 1.15—1.12 (m, 2H, half-CH2CH2), 0.87—0.84 (m, 2H, half-CH2CH2) |
5c | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.36 (d, J = 8.5 Hz, 2H, Ph-2H), 3.35—3.30 (m, 1H, CH), 1.74—1.70 (m, 1H, CH), 1.21[d, J = 6.8 Hz, 6H, (CH3)2], 1.17—1.14 (m, 2H, half-CH2CH2), 0.88—0.85 (m, 2H, half-CH2CH2) |
5d | 8.23 (d, J = 8.4 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 6.63 (dd, J = 16.8, 10.3 Hz, 1H, =CH), 6.48 (dd, J = 16.8, 1.6 Hz, 1H, CH), 5.78 (dd, J = 10.3, 1.6 Hz, 1H, =CH), 1.93—1.89 (m, 1H, CH), 1.21—1.18 (m, 2H, half-CH2CH2), 0.94—0.91 (m, 2H, half-CH2CH2) |
5e | 8.17 (d, J = 8.5 Hz, 2H, Ph-2H), 7.30 (d, J = 8.5 Hz, 2H, Ph-2H), 4.23 (q, J = 7.1 Hz, 2H, CH2), 2.83—2.78 (m, 1H, CH), 1.20 (t, J = 7.1 Hz, 3H, CH3), 1.19—1.16 (m, 2H, half-CH2CH2), 1.02—0.99 (m, 2H, half-CH2CH2) |
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.) |
---|---|---|---|---|---|
6a | 4.0 | white solid | 185.2—185.6 | 80.45 | 365.2(365.1) |
6b | 5.0 | white solid | 190.5—191.2 | 80.25 | 338.4(338.1) |
6c | 4.0 | yellow solid | 162.6—163.7 | 90.84 | 360.3(360.1) |
6d | 5.0 | white solid | 184.2—185.2 | 84.52 | 380.3(380.1) |
6e | 5.0 | white solid | 183.5—184.2 | 73.69 | 384.2(384.1) |
6f | 5.0 | white solid | 195.2—195.8 | 80.42 | 380.2(380.1) |
6g | 5.0 | white solid | 248.6—249.0 | 70.35 | 384.1(384.1) |
Table 3 Physical data and ESI-MS results of compounds 6a—6g
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.) |
---|---|---|---|---|---|
6a | 4.0 | white solid | 185.2—185.6 | 80.45 | 365.2(365.1) |
6b | 5.0 | white solid | 190.5—191.2 | 80.25 | 338.4(338.1) |
6c | 4.0 | yellow solid | 162.6—163.7 | 90.84 | 360.3(360.1) |
6d | 5.0 | white solid | 184.2—185.2 | 84.52 | 380.3(380.1) |
6e | 5.0 | white solid | 183.5—184.2 | 73.69 | 384.2(384.1) |
6f | 5.0 | white solid | 195.2—195.8 | 80.42 | 380.2(380.1) |
6g | 5.0 | white solid | 248.6—249.0 | 70.35 | 384.1(384.1) |
Compound | |
---|---|
6a | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.41 (d, J = 8.4 Hz, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.16 [m, 4H, 2(half-CH2CH2)], 0.94—0.91 [m, 4H, 2(half-CH2CH2)] |
6b | 8.24 (d, J = 8.5 Hz, 2H, Ph-2H), 7.34 (d, J = 8.5 Hz, 2H, Ph-2H), 6.56—6.47 (m, 4H, =CH2), 5.80 (t, J = 5.9 Hz, 2H, =CH) |
6c | 8.27 (d, J = 8.3 Hz, 2H, Ph-2H), 8.00 (dd, J = 5.4, 3.1 Hz, 2H, Ph-2H), 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Ph-2H), 7.70 (d, J = 8.3 Hz, 2H, Ph-2H) |
6d | 8.15 (d, J = 8.0 Hz, 1H, Ph-H), 7.24 (d, J = 8.6 Hz, 2H, Ph-2H), 2.69 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.20—1.15 [m, 4H, 2(half-CH2CH2)], 0.93—0.90 [m, 4H, 2(half-CH2CH2)] |
6e | 8.19 (t, J = 7.9 Hz, 1H, Ph-H), 7.26—7.20 (m, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.18 [m, 4H, 2(half-CH2CH2)], 0.97—0.94 [m, 4H, 2(half-CH2CH2)] |
6f | 8.11—8.08 (m, 1H, Ph-H), 8.04 (dd, J = 8.1, 2.0 Hz, 1H, Ph-H), 7.34 (d, J = 8.1 Hz, 1H, Ph-H), 2.31 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.21—1.12 [m, 4H, 2(half-CH2CH2)], 0.94—0.87 [m, 4H, 2(half-CH2CH2)] |
6g | 8.02 (d, J = 8.2 Hz, 1H, Ph-H), 7.98 (d, J = 9.5 Hz, 1H, Ph-H), 7.45 (t, J = 7.8 Hz, 1H, Ph-H), 2.13—2.10 (m, 2H, CH), 1.22—1.19 [m, 4H, 2(half-CH2CH2)], 0.96—0.93 [m, 4H, 2(half-CH2CH2)]. |
Table 4 1H NMR data of compounds 6a—6g
Compound | |
---|---|
6a | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.41 (d, J = 8.4 Hz, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.16 [m, 4H, 2(half-CH2CH2)], 0.94—0.91 [m, 4H, 2(half-CH2CH2)] |
6b | 8.24 (d, J = 8.5 Hz, 2H, Ph-2H), 7.34 (d, J = 8.5 Hz, 2H, Ph-2H), 6.56—6.47 (m, 4H, =CH2), 5.80 (t, J = 5.9 Hz, 2H, =CH) |
6c | 8.27 (d, J = 8.3 Hz, 2H, Ph-2H), 8.00 (dd, J = 5.4, 3.1 Hz, 2H, Ph-2H), 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Ph-2H), 7.70 (d, J = 8.3 Hz, 2H, Ph-2H) |
6d | 8.15 (d, J = 8.0 Hz, 1H, Ph-H), 7.24 (d, J = 8.6 Hz, 2H, Ph-2H), 2.69 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.20—1.15 [m, 4H, 2(half-CH2CH2)], 0.93—0.90 [m, 4H, 2(half-CH2CH2)] |
6e | 8.19 (t, J = 7.9 Hz, 1H, Ph-H), 7.26—7.20 (m, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.18 [m, 4H, 2(half-CH2CH2)], 0.97—0.94 [m, 4H, 2(half-CH2CH2)] |
6f | 8.11—8.08 (m, 1H, Ph-H), 8.04 (dd, J = 8.1, 2.0 Hz, 1H, Ph-H), 7.34 (d, J = 8.1 Hz, 1H, Ph-H), 2.31 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.21—1.12 [m, 4H, 2(half-CH2CH2)], 0.94—0.87 [m, 4H, 2(half-CH2CH2)] |
6g | 8.02 (d, J = 8.2 Hz, 1H, Ph-H), 7.98 (d, J = 9.5 Hz, 1H, Ph-H), 7.45 (t, J = 7.8 Hz, 1H, Ph-H), 2.13—2.10 (m, 2H, CH), 1.22—1.19 [m, 4H, 2(half-CH2CH2)], 0.96—0.93 [m, 4H, 2(half-CH2CH2)]. |
目标化合物 | 抑制率/% | ||||
---|---|---|---|---|---|
6.25 mg/L | 3.125 mg/L | 1.5625 mg/L | 0.7825 mg/L | 0.39125 mg/L | |
5a | 75 | 30 | 0 | — | — |
5b | 98 | 60 | 35 | — | — |
5c | 0 | 0 | 0 | — | — |
5d | 85 | 65 | 30 | — | — |
5e | 85 | 50 | 10 | — | — |
6a | 100 | 100 | 99 | 93 | 90 |
6b | 20 | 15 | 0 | — | — |
6c | 50 | 20 | 0 | — | — |
6d | 30 | 0 | 0 | — | — |
6e | 100 | 98 | 60 | — | — |
6f | 78 | 45 | 20 | — | — |
6g | 100 | 95 | 50 | — | — |
苯醚甲环唑 | 95 | 50 | 15 | — | — |
嘧菌酯 | 100 | 100 | 100 | 100 | 98 |
Table 5 Anti-fungal activity against soybean rust by target compounds
目标化合物 | 抑制率/% | ||||
---|---|---|---|---|---|
6.25 mg/L | 3.125 mg/L | 1.5625 mg/L | 0.7825 mg/L | 0.39125 mg/L | |
5a | 75 | 30 | 0 | — | — |
5b | 98 | 60 | 35 | — | — |
5c | 0 | 0 | 0 | — | — |
5d | 85 | 65 | 30 | — | — |
5e | 85 | 50 | 10 | — | — |
6a | 100 | 100 | 99 | 93 | 90 |
6b | 20 | 15 | 0 | — | — |
6c | 50 | 20 | 0 | — | — |
6d | 30 | 0 | 0 | — | — |
6e | 100 | 98 | 60 | — | — |
6f | 78 | 45 | 20 | — | — |
6g | 100 | 95 | 50 | — | — |
苯醚甲环唑 | 95 | 50 | 15 | — | — |
嘧菌酯 | 100 | 100 | 100 | 100 | 98 |
目标化合物 | IC50/(mg/L) | 毒力回归方程 | R |
---|---|---|---|
5a | 4.265 | y = 1.2457x - 0.2664 | 0.9910 |
5b | 2.251 | y = 1.0464x + 0.1255 | 0.9375 |
5d | 2.363 | y = 0.9135x + 0.1479 | 0.9952 |
5e | 3.197 | y = 1.2457x - 0.1331 | 0.9968 |
6c | 6.174 | y = 0.8305x - 0.1776 | 0.9808 |
6e | 1.442 | y = 0.8372x - 0.2205 | 0.9999 |
6f | 3.352 | y = 0.9634x - 0.0001 | 0.9966 |
6g | 1.563 | y = 0.6727x - 0.1391 | 0.9998 |
苯醚甲环唑 | 3.125 | y = 1.3288x - 0.1242 | 0.9916 |
Table 6 IC50 values of some compounds against soybean rust
目标化合物 | IC50/(mg/L) | 毒力回归方程 | R |
---|---|---|---|
5a | 4.265 | y = 1.2457x - 0.2664 | 0.9910 |
5b | 2.251 | y = 1.0464x + 0.1255 | 0.9375 |
5d | 2.363 | y = 0.9135x + 0.1479 | 0.9952 |
5e | 3.197 | y = 1.2457x - 0.1331 | 0.9968 |
6c | 6.174 | y = 0.8305x - 0.1776 | 0.9808 |
6e | 1.442 | y = 0.8372x - 0.2205 | 0.9999 |
6f | 3.352 | y = 0.9634x - 0.0001 | 0.9966 |
6g | 1.563 | y = 0.6727x - 0.1391 | 0.9998 |
苯醚甲环唑 | 3.125 | y = 1.3288x - 0.1242 | 0.9916 |
1 | Li D D, Zhang S S, Song Z H, et al. Bioactivity-guided mixed synthesis accelerate the serendipity in lead optimization: discovery of fungicidal homodrimanyl amides[J]. Eur. J. Med. Chem., 2017, 136: 114-121. |
2 | Wang L L, Li C, Zhang Y Y, et al. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi[J]. J. Agr. Food. Chem., 2013, 61(36): 8632-8640. |
3 | Price C L, Parker J E, Warrilow A G S, et al. Azole fungicides— understanding resistance mechanisms in agricultural fungal pathogens[J]. Pest. Manag. Sci., 2015, 71(8): 1054-1058. |
4 | 李琼, 张晓明. 病虫害对5个大豆主产国大豆产量影响的概述[J]. 农学学报, 2018, 8(4): 23-27. |
Li Q, Zhang X M. Effect of diseases and insect pests on soybean yield in the top five soybean producing countries: a review [J]. Journal of Agriculture, 2018, 8(4): 23-27. | |
5 | Phillips McDougall AgriServicer, Inc. Crops Section 2017 Market[EB/OL]. [2019-02-06]. . |
6 | 刘梦竹, 裴鸿艳, 张静, 等. 大豆锈病防治药剂研究进展[J]. 现代农药, 2020, 19(6): 11-21. |
Liu M Z, Pei H Y, Zhang J, et al. Research progress of fungicides for soybean rust[J]. Modern Agrochemicals, 2020, 19(6): 11-21. | |
7 | Stimson L, Wood V, Khan O, et al. HDAC inhibitor-based therapies and haematological malignancy[J]. Ann. Oncol., 2009, 20(8): 1293-1302. |
8 | 张琳. CDKs/HDACs双靶点抑制剂T-17的抗肿瘤药效学研究[D]. 重庆: 重庆医科大学, 2021. |
Zhang L. The anticancer pharmacodynamics of the T-17, a dual target inhibitor of CDKs and HDACs[D]. Chongqing: Chongqing Medical University, 2021. | |
9 | Winter C, Fehr M. Discovery of the trifluoromethyloxadiazoles—a new class of fungicides with a novel mode-of-action[M]// Recent Highlights in the Discovery and Optimization of Crop Protection Products. Amsterdam: Elsevier, 2021: 401-423. |
10 | Khan I, Ibrar A, Abbas N, et al. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications[J]. Eur. J. Med.Chem., 2014, 76: 193-244. |
11 | Fan Z J, Shi J, Bao X P. Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety[J]. Mol. Divers., 2018, 22: 657-667. |
12 | 刘瑶, 李珊, 裘旎, 等. 3-芳基-5-吡唑基-1,2,4-𫫇二唑类HIF-1抑制剂的结构优化与构效关系研究[J]. 中国现代应用药学, 2021, 38(10): 1153-1160. |
Liu Y, Li S, Qiu N, et al. Structural modification and SAR study of 3-aryl-5-pyrazol-1,2,4-oxadiazole derivatives as HlF-1 inhibitor[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(10): 1153-1160. | |
13 | Eleutherakis-papaiakovou E, Kanellias N, Kastritis E, et al. Efficacy of panobinostat for the treatment of multiple myeloma[J]. J. Oncol., 2020, 2020: 7131802. |
14 | Nazir M, Abbasi M A, Rehman A, et al. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: as potent anti-diabetic agents[J]. Bioorg. Chem., 2018, 81: 253-263. |
15 | 崔建国,庞丽萍,刘畅, 等. 某些具有吡唑和1,2,4-二唑支链的杂环甾体化合物的合成、表征及抗肿瘤活性评价(英文)[J]. 化学试剂, 2018, 40(7): 612-622. |
Cui J G, Pang L P, Liu C, et al. Synthesis,characterization and antiproliferative evaluation of some heterosteroids possessing side chain of pyrazoles or 1,2,4-oxadiazoles[J]. Chemical Reagents, 2018, 40(7): 612-622. | |
16 | 刘斌, 徐小娜, 朱周静, 等. N-[2,6-二氯-4-(1,2,4-𫫇二唑-3-基)苯基]-2-甲氧基烟酰胺的合成、晶体结构及抗肿瘤活性研究[J]. 化学通报, 2021, 84(4): 383-387, 399, 289. |
Liu B, Xu X N, Zhu Z J, et al. Synthesis,crystal structure and antitumor activity of N-(2,6-dichloro-4-(1,2,4-oxadiazol-3-yl) phenyl)-2-methoxynicotinamide[J]. Chem. Bull., 2021, 84(4): 383-387, 399, 289. | |
17 | 章乐天, 苏嘉媛, 徐晓勇. 作为杀菌和杀虫先导的1,2,4-𫫇二嗪衍生物的设计与合成研究[J]. 有机化学, 2021, 41(9): 3539-3549. |
Zhang L T, Su J Y, Xu X Y. Design and synthesis of 1,2,4-oxadiazine derivatives as promising fungicide and insecticide lead compound[J]. Chin. J. Org. Chem., 2021, 41(9): 3539-3549. | |
18 | 朱灵志. 含1,3,4-𫫇(噻)二唑或吡啶结构的1,2,4-𫫇二唑衍生物的设计合成及生物活性研究[D]. 贵阳: 贵州大学, 2021. |
Zhu L Z. Design, synthesis and biological activity of 1,2,4-oxadiazole derivatives containing 1,3,4-oxadiazole or pyridine structures [D]. Guiyang: Guizhou University, 2021. | |
19 | 孙鉴昕, 王将, 冯梦静, 等. 新型含1,2,4-𫫇二唑结构的酰胺类化合物的设计、合成及生物活性[J]. 山东化工,2021, 50(18): 42-44, 50. |
Sun J X, Wang J, Feng M J, et al. Design,synthesis and biological activity of novel amides containing 1,2,4-oxadiazole[J]. Shandong Chemical Industry, 2021, 50(18): 42-44, 50. | |
20 | 戴红, 丁颖, 杜显超, 等. 新型含取代𫫇二唑结构的吡唑肟类化合物的合成与生物活性研究[J]. 有机化学, 2018, 38(7): 1755-1762. |
Dai H, Ding Y, Du X C, et al. Synthesis and biological activities of novel pyrazole oximes containing substituted oxadiazole moiety[J]. Chin. J. Org. Chem., 2018, 38(7): 1755-1762. | |
21 | 王锋, 刘东东, 朱晨, 等. Flufenoxadiazam的合成及生物活性[J]. 农药, 2022, 61(5): 326-328. |
Wang F, Liu D D, Zhu C, et al. Synthesis and fungicidal activity research of flufenoxadiazam[J]. Agrochemicals, 2022, 61(5): 326-328. | |
22 | 吴文能, 费强, 王瑞, 等. 5-嘧啶基1,2,4-𫫇二唑化合物的合成及抗菌活性研究[J]. 化学研究与应用, 2019, 31(2): 355-360. |
Wu W N, Fei Q, Wang R, et al. Synthesis and fungicidal activity of 5-pyrimidine 1,2,4-oxadiazole derivatives[J]. Chem. Res. Appl., 2019, 31(2): 355-360. | |
23 | Dai H, Chen J, Li G, et al. Design, synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes[J]. Bioorg. Med. Chem. Lett., 2017, 27(4): 950-953. |
24 | 陈东亮, 初文毅, 鄢明. 1,2,4-𫫇二唑类化合物的合成及抗菌活性研究[J]. 化学研究与应用, 2010, 22(2): 176-181. |
Chen D L, Chu W Y, Yan M. Synthesis and antibacterial activity of 1,2,4-oxadiazole derivatives[J]. Chem. Res. Appl., 2010, 22(2): 176-181. | |
25 | 田克情, 刘晓欣, 王娇, 等. 含𫫇二唑环的1,5-苯并硫氮杂卓衍生物的合成及抑菌活性研究[J]. 化学试剂, 2015, 37(7): 608-612. |
Tian K Q, Liu X X, Wang J, et al. Synthesis and antibacterical properties of 1,5-benzothiazepine derivatives containing oxadiazolo[J]. Chemical Reagents, 2015, 37(7): 608-612. | |
26 | 张霁, 金传飞, 张英俊. 含氟药物研究进展和芳(杂)环氟化及N(n=1,2,3)氟甲基化新方法[J]. 有机化学, 2014, 34(4): 662-680. |
Zhang J, Jin C F, Zhang Y J. Recent advances in research and development of fluorinated drugs and new methods for fluorination, mono-, di- and tri-fluoromethylation[J]. Chin. J. Org. Chem., 2014, 34(4): 662-680. | |
27 | 刘华铮. 基于δ-三氟甲基对亚甲基苯醌的1,6-共轭加成合成有机叠氮化合物的研究[D]. 泰安: 山东农业大学, 2021. |
Liu H Z. Research on synthesis of organic azides by 1,6-conjugation addition of δ-CF3-p-QMs[D]. Taian: Shandong Agricultural University, 2021. | |
28 | Isanbor C, O'Hagan D, Tommasini M, et al. Fluorine in medicinal chemistry: a review of anti-cancer agents[J]. J. Fluorine. Chem., 2006, 127(3): 303-319. |
29 | Hoffman T J, Stierli D. Microbiocidal oxadiazole derivatives: US10757941[P]. 2020-09-01. |
30 | Wieja A, Winter C, Rosenbaum C, et al. Use of substituted oxadiazoles for combating phytopathogenic fungi: US10118906[P]. 2018-11-06. |
31 | Gonzalez E C, Munoz A O, Solana J S. 1,2,4-Oxadiazole derivatives as histone deacetylase 6 inhibitors: US20200339569[P]. 2020-10-29. |
32 | 曹冉, 李伟, 孙汉资, 等. 计算化学方法在基于受体结构的药物分子设计中的基础理论及应用[J]. 药学学报, 2013, 48(7): 1041-1052. |
Cao R, Li W, Sun H Z, et al. Computational chemistry in structure-based drug design[J]. Acta Pharm. Sin., 2013, 48(7): 1041-1052. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[10] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[13] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[14] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||