CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 303-312.DOI: 10.11949/0438-1157.20221074
• Reviews and monographs • Previous Articles Next Articles
Houchuan YU1,2(), Teng REN1,2, Ning ZHANG1,2(), Xiaobin JIANG1, Yan DAI3, Xiaopeng ZHANG1,2, Junjiang BAO1,2, Gaohong HE1()
Received:
2022-07-09
Revised:
2022-10-11
Online:
2023-03-20
Published:
2023-01-05
Contact:
Ning ZHANG, Gaohong HE
余后川1,2(), 任腾1,2, 张宁1,2(), 姜晓滨1, 代岩3, 张晓鹏1,2, 鲍军江1,2, 贺高红1()
通讯作者:
张宁,贺高红
作者简介:
余后川(1997—),男,硕士研究生,yuhouchuan9@163.com
基金资助:
CLC Number:
Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport[J]. CIESC Journal, 2023, 74(1): 303-312.
余后川, 任腾, 张宁, 姜晓滨, 代岩, 张晓鹏, 鲍军江, 贺高红. 二维氧化石墨烯膜离子选择性传递调控的研究进展[J]. 化工学报, 2023, 74(1): 303-312.
Add to citation manager EndNote|Ris|BibTeX
1 | Wang Z Z, Ma C, Xu C Y, et al. Graphene oxide nanofiltration membranes for desalination under realistic conditions[J]. Nature Sustainability, 2021, 4(5): 402-408. |
2 | Ordoñez J, Gago E J, Girard A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 195-205. |
3 | O’Connell D W, Birkinshaw C, O’Dwyer T F. Heavy metal adsorbents prepared from the modification of cellulose: a review[J]. Bioresource Technology, 2008, 99(15): 6709-6724. |
4 | Wang J L, Zhuang S T. Removal of cesium ions from aqueous solutions using various separation technologies[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(2): 231-269. |
5 | Xiao J L, Sun S Y, Song X F, et al. Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve[J]. Chemical Engineering Journal, 2015, 279: 659-666. |
6 | Zante G, Boltoeva M, Masmoudi A, et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes[J]. Journal of Membrane Science, 2019, 580: 62-76. |
7 | Huang Q B, Liu S, Guo Y A, et al. Separation of mono-/di-valent ions via charged interlayer channels of graphene oxide membranes[J]. Journal of Membrane Science, 2022, 645: 120212. |
8 | Razmjou A, Asadnia M, Hosseini E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 2019, 10(1): 5793. |
9 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n [J]. Science, 1999, 283(5405): 1148-1150. |
10 | Liu X H, Guan C Z, Ding S Y, et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions[J]. Journal of American Chemistry Society, 2013, 135(28): 10470-10474. |
11 | Das S, Heasman P, Ben T, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chemical Reveiw, 2017, 117(3): 1515-1563. |
12 | Toda K, Furue R, Hayami S. Recent progress in applications of graphene oxide for gas sensing: a review[J]. Analytica Chimica Acta, 2015, 878: 43-53. |
13 | Yang R, Wu S, Wang D M, et al. Fabrication of high-quality all-graphene devices with low contact resistances[J]. Nano Research, 2014, 7(10): 1449-1456. |
14 | Lin Y, Waston K A, Kim J W. Bulk preparation of holey graphene via controlled catalytic oxidation[J]. Nanoscale, 2013, 5(17): 7814-7824. |
15 | Liu X P, Zhang L, Cui X W, et al. 2D material nanofiltration membranes: from fundamental understandings to rational design[J]. Advanced Science, 2021, 8(23): e2102493. |
16 | Wei Y B, Pastuovic Z, Murphy T, et al. Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation[J]. Applied Surface Science, 2020, 505: 144651. |
17 | Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications, 2019, 10(1): 1253. |
18 | Deng J X, You Y, Bustamante H, et al. Mechanism of water transport in graphene oxide laminates[J]. Chemical Science, 2017, 8(3): 1701-1704. |
19 | Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
20 | Esfandiar A, Radha B, Wang F C, et al. Size effect in ion transport through angstrom-scale slits[J]. Science, 2017, 358(6362): 511-513. |
21 | Hu M, Mi B X. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction[J]. Journal of Membrane Science, 2014, 469: 80-87. |
22 | Liang S S, Wang S, Chen L, et al. Controlling interlayer spacings of graphene oxide membranes with cationic for precise sieving of mono-/multi-valent ions[J]. Separation and Purification Technology, 2020, 241: 116738. |
23 | Cho Y H, Kim H W, Lee H D, et al. Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited[J]. Journal of Membrane Science, 2017, 544: 425-435. |
24 | Oh Y, Armstrong D L, Finnerty C, et al. Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants[J]. Journal of Membrane Science, 541: 235-243. |
25 | Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes[J]. Langmuir, 2013, 29(6): 1885-1892. |
26 | Hong S, Constans C, Martins M V S, et al. Scalable graphene-based membranes for ionicsieving with ultrahigh charge selectivity[J]. Nano Letters, 2017, 17(2): 728-732. |
27 | Hu P Z, Huang B C, Miao Q D, et al. Ion transport behavior through thermally reduced graphene oxide membrane for precise ion separation[J]. Crystals, 2019, 9(4): 214. |
28 | Hung W S, An Q F, Guzman M D, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68: 670-677. |
29 | Sun P Z, Zhu M, Wang K L, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2013, 7(1): 428-437. |
30 | Raidongia K, Huang J X. Nanofluidic ion transport through reconstructed layered materials[J]. Journal of the American Chemical Society, 2012, 134(40): 16528-16531. |
31 | Asghar F, Shakoor B, Fatima S, et al. Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation[J]. RSC Advances, 2022, 12(19): 11750-11768. |
32 | Kulkarni H B, Tambe P, Joshi G M. Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review[J]. Composite Interfaces, 2017, 25(5/6/7): 381-414. |
33 | Li X F, Liu T, Wang D H, et al. Superlight adsorbent sponges based on graphene oxide cross-linked with poly(vinyl alcohol) for continuous flow adsorption[J]. Acs Applied Materials & Interfaces, 2018, 10(25): 21672-21680. |
34 | Xi Y H, Liu Z, Ji J Y, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. Journal of Membrane Science, 2018, 550: 208-218. |
35 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343: 752-754. |
36 | Kumar P V, Bardhan N M, Tongay S, et al. Scalable enhancement of graphene oxide properties by thermally driven phase transformation[J]. Nature Chemistry, 2013, 6(2): 151-158. |
37 | Liu Y C, Yu Z X, Wang Q X, et al. Application of sodium dodecyl sulfate intercalated Co-Al LDH composite materials (RGO/PDA/SDS-LDH) in membrane separation[J]. Applied Clay Science, 2021, 209: 106138. |
38 | Rajaura R S, Singhal I, SharmaK N, et al. Efficient chemical vapour deposition and arc discharge system for production of carbon nano-tubes on a gram scale[J]. The Review of Scientific Instruments, 2019, 90: 123903-123915. |
39 | Zhang P, Gong J L, Zeng G M, et al. Enhanced permeability of rGO/S-GO layered membranes with tunable inter-structure for effective rejection of salts and dyes[J]. Separation and Purification Technology, 2019, 220: 309-319. |
40 | Huang H H, Joshi R K, De Silva K K H, et al. Fabrication of reduced graphene oxide membranes for water desalination[J]. Journal of Membrane Science, 2019, 572: 12-19. |
41 | Buesseler K, Aoyama M, Fukasawa M. Impacts of the Fukushima nuclear power plants on marine radioactivity[J]. Environmental Science & Technology, 2011, 45(23): 9931-9935. |
42 | Jiang J, Mu L H, Qiang Y, et al. Unexpected selective absorption of lithium in thermally reduced graphene oxide membranes[J]. Chinese Physics Letters, 2021, 38(11): 116802. |
43 | Liu X H, Zhong M L, Chen X Y, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydrometallurgy, 2018, 176: 73-77. |
44 | Jiang L L, Luo D, Lu X, et al. Comparative study on chemical reduction of free-standing flexible GO films and their cyclic voltammetry performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 630-637. |
45 | Zhang Z S, Zou L, Aubry C, et al. Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane[J]. Journal of Membrane Science, 2016, 515: 204-211. |
46 | Ye S B, Liu Y, Feng J C. Low-density, mechanical compressible, water-induced self-recoverable graphene aerogels for water treatment[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22456-22464. |
47 | Huang L L, Li Z Y, Luo Y, et al. Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation[J]. Separation and Purification Technology, 2021, 256: 117839. |
48 | Huang C C, Bai H, Li C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents[J]. Chemical Communications, 2011, 47(17): 4962-4964. |
49 | Xu Y X, Wu Q, Sun Y Q, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano, 2010, 4(12): 7358-7362. |
50 | Hu H, Zhao Z B, Wan W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223. |
51 | Wang Y, Wei Z D, Nie Y, et al. Generation of three dimensional pore controlled nitrogen-doped graphene hydrogels for high-performance supercapacitors by employing formamide as the modulator[J]. Journal of Materials Chemistry A, 2017, 5(4): 1442-1445. |
52 | Han Z Y, Huang L J, Qu H J, et al. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment[J]. Journal of Materials Science, 2021, 56(16): 9545-9574. |
53 | Xu C, Cui A J, Xu Y L, et al. Graphene oxide-TiO2 composite filtration membranes and their potential application for water purification[J]. Carbon, 2013, 62: 465-471. |
54 | Guan K C, Zhao D, Zhang M C, et al. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2017, 542: 41-51. |
55 | Sun J Q, Chen Y, Hu C Z, et al. Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions[J]. Chemosphere, 2019, 222: 156-164. |
56 | Huang X M, Pan M. The highly efficient adsorption of Pb(Ⅱ) on graphene oxides: a process combined by batch experiments and modeling techniques[J]. Journal of Molecular Liquids, 2016, 215: 410-416. |
57 | Wang L, Guo X H, Cao K C, et al. Effective charge-discriminated group separation of metal ions under highly acidic conditions using nanodiamond-pillared graphene oxide membrane[J]. Journal of Materials Chemistry A, 2017, 5(17): 8051-8061. |
58 | Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. |
59 | Lu D, Yao Z K, Jiao L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2: 100032. |
60 | Hu J Q, Liu Z, Deng K, et al. A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions[J]. Journal of Membrane Science, 2019, 591: 117345. |
61 | Jia Z Q, Wang Y, Shi W X, et al. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation[J]. Journal of Membrane Science, 2016, 520: 139-144. |
62 | Meng N, Zhao W, Shamsaei E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. |
63 | Zhang N, Qi W X, Huang L L, et al. A composite membrane of cross-linked GO network semi-interpenetrating in polysulfone substrate for dye removal from water[J]. Journal of Membrane Science, 2020, 613: 118456. |
64 | Leong Z Y, Han Z J, Wang G Z, et al. Electric field modulated ion-sieving effects of graphene oxide membranes[J]. Journal of Materials Chemistry A, 2021, 9(1): 244-253. |
65 | Jia Z Q, Shi W X. Tailoring permeation channels of graphene oxide membranes for precise ion separation[J]. Carbon, 2016, 101: 290-295. |
66 | Sun P Z, Zhu M, Wang K L, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2013, 7(1): 428-437. |
67 | Jia Z Q, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. Journal of Materials Chemistry A, 2015, 3(8): 4405-4412. |
68 | White R L, White C M, Turgut H, et al. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 18-28. |
69 | Qian Y J, Shang J, Liu D, et al. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization[J]. Journal of the American Chemical Society, 2021, 143(13): 5080-5090. |
70 | Wu X N, Yang L, Shao W L, et al. Fabrication of high performance TFN membrane incorporated with graphene oxide via support-free interfacial polymerization[J]. Science of the Total Environment, 2021, 793:148503. |
71 | Zhao Y, Shi W H, der Bruggen V, et al. Tunable nanoscale interlayer of graphene with symmetrical polyelectrolyte multilayer architecture for lithium extraction[J]. Advanced Materials Interfaces, 2018, 5(6): 1701449. |
72 | Tan S, Zhang D F, Nguyen M T, et al. Tuning the charge and hydrophobicity of graphene oxide membranes by functionalization with ionic liquids at epoxide sites[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 19031-19042. |
73 | Ahmad S Z N, Salleh W N W, Ismail A F, et al. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms[J]. Chemosphere, 2020, 248: 126008. |
74 | Xue Y H, Xia Y, Yang S, et al. Atomic-scale ion transistor with ultrahigh diffusivity[J]. Science, 2021, 372: 501-503. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[8] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[11] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[12] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[13] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[14] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||