CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3522-3532.DOI: 10.11949/0438-1157.20230513
• Energy and environmental engineering • Previous Articles Next Articles
Jintong LI(), Shun QIU, Wenshou SUN()
Received:
2023-05-29
Revised:
2023-07-31
Online:
2023-10-18
Published:
2023-08-25
Contact:
Wenshou SUN
通讯作者:
孙文寿
作者简介:
李锦潼(1998—),男,硕士研究生,2632950395@qq.com
基金资助:
CLC Number:
Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry[J]. CIESC Journal, 2023, 74(8): 3522-3532.
李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic diagram of the experimental apparatus1—gas cylinder; 2—switch valve; 3—pressure reducing valve; 4—pressure maintaining valve; 5—rotor flow meter; 6—gas mixing bottle; 7—soap film flow meter; 8—inclined tube manometer; 9—agitator; 10—ultraviolet lamp; 11—thermometer; 12—reactor; 13—heating jacket; 14—water cooler; 15—electronic soap film flowmeter; 16—absorption vessel
Fig.7 Variation of 1-(1-F2)1/3 with time (a) and variation of 1-3(1-F2)2/3+2(1-F2)with time (b) during 1.0 mmol/L oxalic acid enhanced process under UV irradiation
煤样 | 组分 | 结合能/ eV | 半峰宽/ eV | 积分面积 | 面积 占比/% |
---|---|---|---|---|---|
原煤样 | 黄铁矿铁 | 707.96 | 2.00 | 1016.03 | 34.16 |
Fe2+ | 710.70 | 2.00 | 1269.06 | 42.66 | |
Fe3+ | 712.78 | 2.00 | 689.56 | 23.18 | |
浸出后煤样 | 黄铁矿铁 | 707.01 | 2.00 | 219.83 | 20.70 |
Fe2+ | 710.82 | 2.00 | 446.60 | 42.06 | |
Fe3+ | 713.07 | 2.00 | 395.30 | 37.24 | |
原煤样 | As(Ⅲ) | 44.04 | 1.00 | 87.44 | 70.94 |
As(Ⅴ) | 45.63 | 1.00 | 35.82 | 29.06 | |
浸出后煤样 | As(Ⅲ) | 44.21 | 1.00 | 17.57 | 26.37 |
As(Ⅴ) | 45.72 | 1.00 | 49.07 | 73.63 | |
原煤样 | 黄铁矿硫 | 162.97 | 1.70 | 309.19 | 30.59 |
有机硫 | 165.79 | 1.70 | 149.74 | 14.82 | |
硫酸盐硫 | 168.29 | 1.70 | 551.68 | 54.59 | |
浸出后煤样 | 黄铁矿硫 | 162.22 | 1.70 | 57.85 | 7.89 |
有机硫 | 164.80 | 1.70 | 62.66 | 8.54 | |
硫酸盐硫 | 168.73 | 1.70 | 612.92 | 83.57 |
Table 1 XPS parameters of raw coal and coal residue
煤样 | 组分 | 结合能/ eV | 半峰宽/ eV | 积分面积 | 面积 占比/% |
---|---|---|---|---|---|
原煤样 | 黄铁矿铁 | 707.96 | 2.00 | 1016.03 | 34.16 |
Fe2+ | 710.70 | 2.00 | 1269.06 | 42.66 | |
Fe3+ | 712.78 | 2.00 | 689.56 | 23.18 | |
浸出后煤样 | 黄铁矿铁 | 707.01 | 2.00 | 219.83 | 20.70 |
Fe2+ | 710.82 | 2.00 | 446.60 | 42.06 | |
Fe3+ | 713.07 | 2.00 | 395.30 | 37.24 | |
原煤样 | As(Ⅲ) | 44.04 | 1.00 | 87.44 | 70.94 |
As(Ⅴ) | 45.63 | 1.00 | 35.82 | 29.06 | |
浸出后煤样 | As(Ⅲ) | 44.21 | 1.00 | 17.57 | 26.37 |
As(Ⅴ) | 45.72 | 1.00 | 49.07 | 73.63 | |
原煤样 | 黄铁矿硫 | 162.97 | 1.70 | 309.19 | 30.59 |
有机硫 | 165.79 | 1.70 | 149.74 | 14.82 | |
硫酸盐硫 | 168.29 | 1.70 | 551.68 | 54.59 | |
浸出后煤样 | 黄铁矿硫 | 162.22 | 1.70 | 57.85 | 7.89 |
有机硫 | 164.80 | 1.70 | 62.66 | 8.54 | |
硫酸盐硫 | 168.73 | 1.70 | 612.92 | 83.57 |
1 | Wang C B, Liu H M, Zhang Y, et al. Review of arsenic behavior during coal combustion: volatilization, transformation, emission and removal technologies[J]. Progress in Energy and Combustion Science, 2018, 68: 1-28. |
2 | Liu H M, Wang C B, Sun X, et al. Volatilization of arsenic in coal during isothermal oxy-fuel combustion[J]. Energy & Fuels, 2016, 30(4): 3479-3487. |
3 | López-Antón M A, Díaz-Somoano M, Fierro J L G, et al. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons[J]. Fuel Processing Technology, 2007, 88(8): 799-805. |
4 | Zhang Y, Wang C B, Li W H, et al. Removal of gas-phase As2O3 by metal oxide adsorbents: effects of experimental conditions and evaluation of adsorption mechanism[J]. Energy & Fuels, 2015, 29(10): 6578-6585. |
5 | Kang Y, Liu G J, Chou C L, et al. Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects[J]. Science of the Total Environment, 2011, 412/413: 1-13. |
6 | Sundaram H P, Cho E H, Miller A. SO2 removal by leaching coal pyrite[J]. Energy & Fuels, 2001, 15(2): 470-476. |
7 | Black A, Craw D. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand[J]. International Journal of Coal Geology, 2001, 45(2/3): 181-193. |
8 | Sun W S, Liu J C, Wang L C, et al. Aluminum-enhanced coal pyrite leaching during SO2 removal with coal slurry[J]. Water, Air, & Soil Pollution, 2016, 227(7): 221. |
9 | Moses C O, Kirk Nordstrom D, Herman J S, et al. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1561-1571. |
10 | 鲁真真, 孙文寿, 郭远峰, 等. 氧气摩尔分数和紫外光照射对烟气浸出煤中砷的影响[J]. 高校化学工程学报, 2019, 33(4): 989-997. |
Lu Z Z, Sun W S, Guo Y F, et al. Effects of O2 mole fraction and ultraviolet irradiation on arsenic leaching from coal with flue gas[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(4): 989-997. | |
11 | Wang W, Qu Y P, Yang B, et al. Lactate oxidation in pyrite suspension: a Fenton-like process in situ generating H2O2 [J]. Chemosphere, 2012, 86(4): 376-382. |
12 | Schoonen M A A, Harrington A D, Laffers R, et al. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 4971-4987. |
13 | Santana-Casiano J M, González-Dávila M, Millero F J. The role of Fe(Ⅱ) species on the oxidation of Fe(Ⅱ) in natural waters in the presence of O2 and H2O2 [J]. Marine Chemistry, 2006, 99(1/2/3/4): 70-82. |
14 | Cohn C A, Mueller S, Wimmer E, et al. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids[J]. Geochemical Transactions, 2006, 7: 3. |
15 | Rimstidt J D, Vaughan D J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism[J]. Geochimica et Cosmochimica Acta, 2003, 67(5): 873-880. |
16 | Zhang Y, Zhou J T, Li C Y, et al. Reaction kinetics and mechanism of iron(Ⅱ)-induced catalytic oxidation of sulfur(Ⅳ) during wet desulfurization[J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1158-1165. |
17 | Emett M T, Khoe G H. Photochemical oxidation of arsenic by oxygen and iron in acidic solutions[J]. Water Research, 2001, 35(3): 649-656. |
18 | Zhou L, Zheng W, Ji Y F, et al. Ferrous-activated persulfate oxidation of arsenic(Ⅲ) and diuron in aquatic system[J]. Journal of Hazardous Materials, 2013, 263: 422-430. |
19 | Ren H T, Ji Z Y, Wu S H, et al. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V)[J]. Chemosphere, 2018, 208: 294-302. |
20 | Sundman A, Karlsson T, Sjöberg S, et al. Complexation and precipitation reactions in the ternary As(V)-Fe(Ⅲ)-OM (organic matter) system[J]. Geochimica et Cosmochimica Acta, 2014, 145: 297-314. |
21 | Mangiante D M, Schaller R D, Zarzycki P, et al. Mechanism of ferric oxalate photolysis[J]. ACS Earth and Space Chemistry, 2017, 1(5): 270-276. |
22 | Xu T Y, Zhu R L, Shang H, et al. Photochemical behavior of ferrihydrite-oxalate system: interfacial reaction mechanism and charge transfer process[J]. Water Research, 2019, 159: 10-19. |
23 | Sun J, Bostick B C, Mailloux B J, et al. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions[J]. Journal of Hazardous Materials, 2016, 311: 125-133. |
24 | 王明仕, 杨娜娜, 钦凡, 等. 贵州省某村煤中砷含量及赋存状态[J]. 煤炭转化, 2010, 33(4): 1-4. |
Wang M S, Yang N N, Qin F, et al. Content and occurrence of arsenic in coal of a village in Guizhou Province[J]. Coal Conversion, 2010, 33(4): 1-4. | |
25 | 刘恩栋, 杨宁光. 一种新的方便的测定天然水中三价砷的方法[J]. 交通环保, 1998(6): 21-22. |
Liu E D, Yang N G. A new and convenient method for the determination of trivalent arsenic in natural water[J]. Environmental Protection in Transportation, 1998(6): 21-22. | |
26 | Nogueira A A, Souza B M, Dezotti M W C, et al. Ferrioxalate complexes as strategy to drive a photo-FENTON reaction at mild pH conditions: a case study on levofloxacin oxidation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345: 109-123. |
27 | Dong H Y, Wei G F, Yin D Q, et al. Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(Ⅲ) for contaminants degradation[J]. Journal of Hazardous Materials, 2020, 384: 121497. |
28 | Romero A, Santos A, Vicente F, et al. Diuron abatement using activated persulphate: effect of pH, Fe(Ⅱ) and oxidant dosage[J]. Chemical Engineering Journal, 2010, 162(1): 257-265. |
29 | 韩东晖, 李瑛, 李开明, 等. UV强化草酸络合Fe3+活化过硫酸盐氧化降解苯胺[J]. 环境科学, 2018, 39(9): 4257-4264. |
Han D H, Li Y, Li K M, et al. Enhanced degradation of aniline by PS oxidation in the presence of UV and ferric oxalate[J]. Environmental Science, 2018, 39(9): 4257-4264. | |
30 | Hislop K A, Bolton J R. The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 system[J]. Environmental Science & Technology, 1999, 33(18): 3119-3126. |
31 | 梁柱, 罗平, 殷井云, 等. UV-vis/H2O2/草酸铁络合物法调理对污泥脱水性能的影响[J]. 绿色科技, 2017(6): 1-4. |
Liang Z, Luo P, Yin J Y, et al. Effect of UV-vis/H2O2/ferrioxalate complex method on the dewatering performance of sludge[J]. Journal of Green Science and Technology, 2017(6): 1-4. | |
32 | Neppolian B, Celik E, Choi H. Photochemical oxidation of a r s e n i c ( Ⅲ ) to arsenic(V) using peroxydisulfate ions as an oxidizing agent[J]. Environmental Science & Technology, 2008, 42(16): 6179-6184. |
33 | 廖斌,衷水平.砷钙渣稳定化技术研究[J]. 矿产保护与利用, 2013(3): 51-54. |
Liao B, Zhong S P. Research on calcium arsenate residue stabilization technology[J]. Conservation and Utilization of Mineral Resources, 2013(3): 51-54. | |
34 | Kuo D T F, Kirk D W, Jia C Q. The chemistry of aqueous S(Ⅳ)-Fe-O2 system: state of the art[J]. Journal of Sulfur Chemistry, 2006, 27(5): 461-530. |
35 | 易平贵, 俞庆森, 宗汉兴. 黄铁矿化学脱硫的热力学分析[J]. 煤炭转化, 1999, 22(1): 47-52. |
Yi P G, Yu Q S, Zong H X. Thermodynamic analysis for chemical desulfurization of pyrite in coal[J]. Coal Conversion, 1999, 22(1): 47-52. | |
36 | Daggupati V N, Naterer G F, Gabriel K S. Diffusion of gaseous products through a particle surface layer in a fluidized bed reactor[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2449-2458. |
37 | Wang H H, Li G Q, Zhao D, et al. Dephosphorization of high phosphorus oolitic hematite by acid leaching and the leaching kinetics[J]. Hydrometallurgy, 2017, 171: 61-68. |
38 | Ashraf M, Zafar Z I, Ansari T M. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid[J]. Hydrometallurgy, 2005, 80(4): 286-292. |
39 | Mendive C B, Bredow T, Blesa M A, et al. ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2 [J]. Physical Chemistry Chemical Physics, 2006, 8(27): 3232-3247. |
40 | Kim E J, Batchelor B. Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite[J]. Environmental Science & Technology, 2009, 43(8): 2899-2904. |
41 | Zhang X S, Song X D, Wang J F, et al. CO2 gasification of Yangchangwan coal catalyzed by iron-based waste catalyst from indirect coal-liquefaction plant[J]. Fuel, 2021, 285: 119228. |
42 | Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. |
43 | Wang X Q, Wang B, Chen Y F, et al. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting[J]. Journal of Materials Science & Technology, 2022, 105: 266-273. |
44 | Zoroufchi Benis K, Soltan J, McPhedran K N. Electrochemically modified adsorbents for treatment of aqueous arsenic: pore diffusion in modified biomass vs. biochar[J]. Chemical Engineering Journal, 2021, 423: 130061. |
45 | Zhang B, Yan G H, Zhao Y M, et al. Coal pyrite microwave magnetic strengthening and electromagnetic response in magnetic separation desulfurization process[J]. International Journal of Mineral Processing, 2017, 168: 136-142. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[12] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[15] | Yuhao CHEN, Xiaoping CHEN, Jiliang MA, Cai LIANG. Gaseous pollutants emissions from rotary kiln combustion of municipal sewage sludge [J]. CIESC Journal, 2023, 74(5): 2170-2178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||