CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 320-328.DOI: 10.11949/0438-1157.20221598
• Energy and environmental engineering • Previous Articles Next Articles
Congqi HUANG(), Yimei WU, Jianye CHEN, Shuangquan SHAO()
Received:
2022-11-13
Revised:
2022-12-25
Online:
2023-09-27
Published:
2023-06-05
Contact:
Shuangquan SHAO
通讯作者:
邵双全
作者简介:
黄琮琪(1999—),男,硕士研究生,948146937@qq.com
基金资助:
CLC Number:
Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production[J]. CIESC Journal, 2023, 74(S1): 320-328.
黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328.
Add to citation manager EndNote|Ris|BibTeX
工作参数 | 设计值 | 取值 |
---|---|---|
氢气产量/(m³/h) | 10 | 10 |
氧气产量/(m³/h) | 5 | 5 |
KOH碱液质量分数/% | 26~30 | 28 |
KOH碱液工作温度/℃ | 85~90 | 85 |
KOH碱液槽内碱液量/L | 160 | 160 |
KOH碱液碱液循环量/(m³/h) | 0.45~0.65 | 0.6 |
纯水耗量/(kg/h) | 10 | 10 |
冷却水温度/℃ | ≤32 | ≤32 |
空气环境温度/℃ | 0~45 | 25 |
氢气出口温度/℃ | ≤40 | — |
电解功率范围/% | 15~110 | — |
电解耗电量/(kWh/m³ H2) | ≤4.8 | — |
Table 1 Operating parameters of CNDQ10/3.2 series
工作参数 | 设计值 | 取值 |
---|---|---|
氢气产量/(m³/h) | 10 | 10 |
氧气产量/(m³/h) | 5 | 5 |
KOH碱液质量分数/% | 26~30 | 28 |
KOH碱液工作温度/℃ | 85~90 | 85 |
KOH碱液槽内碱液量/L | 160 | 160 |
KOH碱液碱液循环量/(m³/h) | 0.45~0.65 | 0.6 |
纯水耗量/(kg/h) | 10 | 10 |
冷却水温度/℃ | ≤32 | ≤32 |
空气环境温度/℃ | 0~45 | 25 |
氢气出口温度/℃ | ≤40 | — |
电解功率范围/% | 15~110 | — |
电解耗电量/(kWh/m³ H2) | ≤4.8 | — |
设计参数 | 符号 | 设计值 |
---|---|---|
冷却水总温升/℃ | tC2-tC1 | 5 |
冷凝器与冷却水出口的温差/℃ | tR3-tC2 | 3 |
吸收器出口稀溶液温度与吸收温度之差/℃ | tR4-tU2 | 5 |
蒸发器出口驱动热源温度与蒸发温度之差/℃ | tH1-tR1 | 3 |
发生器出口驱动热源温度与发生温度之差/℃ | tH2-tR7 | 2.5 |
吸收器与蒸发器的压差/Pa | PR1-PR4 | 50 |
发生器与冷凝器的压差/Pa | PR7-PR3 | 50 |
溴化锂溶液放气范围/% | ΔX | 1~6 |
溴化锂溶液浓度范围/% | X | 45~65 |
Table 2 Design operating conditions for AHT system
设计参数 | 符号 | 设计值 |
---|---|---|
冷却水总温升/℃ | tC2-tC1 | 5 |
冷凝器与冷却水出口的温差/℃ | tR3-tC2 | 3 |
吸收器出口稀溶液温度与吸收温度之差/℃ | tR4-tU2 | 5 |
蒸发器出口驱动热源温度与蒸发温度之差/℃ | tH1-tR1 | 3 |
发生器出口驱动热源温度与发生温度之差/℃ | tH2-tR7 | 2.5 |
吸收器与蒸发器的压差/Pa | PR1-PR4 | 50 |
发生器与冷凝器的压差/Pa | PR7-PR3 | 50 |
溴化锂溶液放气范围/% | ΔX | 1~6 |
溴化锂溶液浓度范围/% | X | 45~65 |
蒸发 温度/℃ | 冷凝 温度/℃ | 发生 温度/℃ | 吸收 温度/℃ | 文献 COP | 本文 模型 COP | 相对 误差/% |
---|---|---|---|---|---|---|
84.24 | 31.85 | 79.25 | 119.2 | 0.487 | 0.4875 | 0.10 |
Table 3 Verification and comparison of model calculated values and reference values under a certain operating condition
蒸发 温度/℃ | 冷凝 温度/℃ | 发生 温度/℃ | 吸收 温度/℃ | 文献 COP | 本文 模型 COP | 相对 误差/% |
---|---|---|---|---|---|---|
84.24 | 31.85 | 79.25 | 119.2 | 0.487 | 0.4875 | 0.10 |
设计参数 | 含义 | 数值 | 单位 |
---|---|---|---|
tsep、tsep′ | 气液分离器内工质温度 | 58[ | ℃ |
tH0、tH0′ | 碱液与气混合物的初温 | 85 | ℃ |
Δte | 回热换热器热端温差 | 4 | ℃ |
tC | 循环水换热器热端温差 | 3 | ℃ |
PU | 循环水网络的压力 | 0.2 | MPa |
tU0 | 热用户出口循环水温度 | 55[ | ℃ |
tU2 | 吸收器出口循环水温度 | 105 | ℃ |
tC1min | 冷凝器冷却水最低初温 | 10 | ℃ |
mH5/mH5′ | 回热换热器1和2的 回流碱液的流量比 | 2 | — |
Table 4 Operating parameters design of thermal management system
设计参数 | 含义 | 数值 | 单位 |
---|---|---|---|
tsep、tsep′ | 气液分离器内工质温度 | 58[ | ℃ |
tH0、tH0′ | 碱液与气混合物的初温 | 85 | ℃ |
Δte | 回热换热器热端温差 | 4 | ℃ |
tC | 循环水换热器热端温差 | 3 | ℃ |
PU | 循环水网络的压力 | 0.2 | MPa |
tU0 | 热用户出口循环水温度 | 55[ | ℃ |
tU2 | 吸收器出口循环水温度 | 105 | ℃ |
tC1min | 冷凝器冷却水最低初温 | 10 | ℃ |
mH5/mH5′ | 回热换热器1和2的 回流碱液的流量比 | 2 | — |
流体 | 流量/(kg/h) | 状态点及温度值/℃ | |
---|---|---|---|
碱液与气 混合物 | 氧气侧: 247.6; 氢气侧: 495.2 | 电解槽出口热源温度tH0、tH0′ | 85.00 |
蒸发器出口热源温度tH1、tH1′ | 74.31 | ||
发生器出口热源温度tH2、tH2′ | 64.42 | ||
循环水预热器入口温度tH3 | 64.42 | ||
冷风机1入口温度tH4 | 62.18 | ||
冷风机2入口温度tH3′ | 64.42 | ||
气液分离器温度tsep、tsep′ | 58.00 | ||
冷凝器内 冷却水 | 1469 | 冷凝器入口温度tC1 | 10.00 |
冷凝器出口温度tC2 | 15.00 | ||
循环水 | 143.1 | 热用户出口温度tU0 | 55.00 |
循环水预热器出口温度tU1 | 61.42 | ||
热用户入口温度tU2 | 105.00 | ||
回流碱液 | 742.8 | 电解槽入口温度tHr | 58.00 |
Table 5 Flows and temperatures of different fluids under normal power mode
流体 | 流量/(kg/h) | 状态点及温度值/℃ | |
---|---|---|---|
碱液与气 混合物 | 氧气侧: 247.6; 氢气侧: 495.2 | 电解槽出口热源温度tH0、tH0′ | 85.00 |
蒸发器出口热源温度tH1、tH1′ | 74.31 | ||
发生器出口热源温度tH2、tH2′ | 64.42 | ||
循环水预热器入口温度tH3 | 64.42 | ||
冷风机1入口温度tH4 | 62.18 | ||
冷风机2入口温度tH3′ | 64.42 | ||
气液分离器温度tsep、tsep′ | 58.00 | ||
冷凝器内 冷却水 | 1469 | 冷凝器入口温度tC1 | 10.00 |
冷凝器出口温度tC2 | 15.00 | ||
循环水 | 143.1 | 热用户出口温度tU0 | 55.00 |
循环水预热器出口温度tU1 | 61.42 | ||
热用户入口温度tU2 | 105.00 | ||
回流碱液 | 742.8 | 电解槽入口温度tHr | 58.00 |
运行参数 | 计算值 |
---|---|
吸收器稀溶液温度tR4/℃ | 110.00 |
蒸发温度tR1/℃ | 71.31 |
发生器浓溶液温度tR7/℃ | 62.22 |
冷凝温度tR3/℃ | 18.13 |
COP | 0.485 |
Table 6 Operating parameters of AHT system under normal power mode
运行参数 | 计算值 |
---|---|
吸收器稀溶液温度tR4/℃ | 110.00 |
蒸发温度tR1/℃ | 71.31 |
发生器浓溶液温度tR7/℃ | 62.22 |
冷凝温度tR3/℃ | 18.13 |
COP | 0.485 |
换热设备 | 热负荷/kW |
---|---|
蒸发器 | 8.20 |
冷凝器 | 8.12 |
吸收器 | 7.66 |
发生器 | 7.58 |
溶液热交换器 | 2.17 |
循环水预热器 | 1.12 |
冷风机1 | 2.10 |
冷风机2 | 1.61 |
Table 7 Loads of main heat exchangers
换热设备 | 热负荷/kW |
---|---|
蒸发器 | 8.20 |
冷凝器 | 8.12 |
吸收器 | 7.66 |
发生器 | 7.58 |
溶液热交换器 | 2.17 |
循环水预热器 | 1.12 |
冷风机1 | 2.10 |
冷风机2 | 1.61 |
系统 | 换热设备 | 热负荷/kW | 总负荷/kW |
---|---|---|---|
热管理优化设计系统 | 冷风机1 | 2.10 | 11.83 |
冷凝器 | 8.12 | ||
冷风机2 | 1.61 | ||
热用户 | 8.31 | 8.31 | |
传统系统 | 气液分离器 | 16.58 | 20.35 |
碱液冷却器 | 3.77 |
Table 8 Comparison of thermal loads of different systems
系统 | 换热设备 | 热负荷/kW | 总负荷/kW |
---|---|---|---|
热管理优化设计系统 | 冷风机1 | 2.10 | 11.83 |
冷凝器 | 8.12 | ||
冷风机2 | 1.61 | ||
热用户 | 8.31 | 8.31 | |
传统系统 | 气液分离器 | 16.58 | 20.35 |
碱液冷却器 | 3.77 |
设备 | 正常负荷/kW | 低负荷(tHr =70℃)/kW |
---|---|---|
电解槽 | 32.28 | 25.08 |
冷凝器 | 8.12 | 4.31 |
吸收器 | 7.66 | 4.10 |
冷风机1 | 2.10 | 1.40 |
冷风机2 | 1.61 | 0.85 |
热用户 | 8.31 | 4.17 |
回热换热器1 | — | 6.34 |
回热换热器2 | — | 3.17 |
Table 9 Comparison of thermal loads between normal power and low power
设备 | 正常负荷/kW | 低负荷(tHr =70℃)/kW |
---|---|---|
电解槽 | 32.28 | 25.08 |
冷凝器 | 8.12 | 4.31 |
吸收器 | 7.66 | 4.10 |
冷风机1 | 2.10 | 1.40 |
冷风机2 | 1.61 | 0.85 |
热用户 | 8.31 | 4.17 |
回热换热器1 | — | 6.34 |
回热换热器2 | — | 3.17 |
8 | Wang Y M, Xiong Y L, Liu J Q, et al. White paper of Chinese hydrogen energy source and fuel cells[R]. China Hydrogen Alliance, 2019. |
9 | 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. |
Sun H X, Li Z, Chen A B, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. | |
10 | 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136. |
Ning N. Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship Science and Technology, 2017, 39(11): 133-136. | |
11 | Mraoui A, Benyoucef B, Hassaine L. Experiment and simulation of electrolytic hydrogen production: case study of photovoltaic-electrolyzer direct connection[J]. International Journal Hydrogen Energy, 2018, 43(6): 3441-3450. |
12 | Pino F J, Valverde L, Rosa F. Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind-hydrogen systems[J]. Journal of Power Sources, 2011, 196(9): 4418-4426. |
13 | Bailey M P. Electrolyzer technologies for green hydrogen[J]. Chemical Engineering, 2020, 127(9): 26-30. |
14 | Anonymous. Findings suggest new design principle for water-splitting catalysts[J]. Chemical Engineering, 2020, 127(2): 9. |
15 | 余智勇, 张畅, 任志博, 等. 一种电解水制氢余热利用系统及其工作方法: 111336571A[P]. 2020-06-26. |
Yu Z Y, Zhang C, Ren Z B, et al. Waste heat utilization system for hydrogen production by electrolytic water and working method of waste heat utilization system: 111336571A[P]. 2020-06-26. | |
16 | 任志博, 王金意, 张畅, 等. 一种利用热泵回收电解水制氢余热的系统及方法: 113137783A[P]. 2021-07-20. |
Ren Z B, Wang J Y, Zhang C, et al. Renewable energy driven zero-carbon efficient distributed energy supply system and operation method: 113137783A[P]. 2021-07-20. | |
17 | 张存满, 吕洪, 上官子轩, 等. 一种大型碱性电解水制氢装置的综合热管理系统: 111748822A[P]. 2020-10-09. |
Zhang C M, Lyu H, Shangguan Z X, et al. Comprehensive thermal management system of large alkaline water electrolysis hydrogen production device: 111748822A[P]. 2020-10-09. | |
18 | 桓佳君, 周巍, 赵晓亮, 等. 一种制氢装置循环水综合热处理系统: 213295524U[P]. 2021-05-28. |
Huan J J, Zhou W, Zhao X L, et al. Comprehensive heat treatment system for circulating water of hydrogen production device: 213295524U[P]. 2021-05-28. | |
19 | 井延伟, 沙济通, 白日欣, 等. 一种冷热氢联供系统及控制方法: 112921343A[P]. 2021-06-08. |
Jing Y W, Sha J T, Bai R X, et al. Cold and hot hydrogen combined supply system and control method: 112921343A[P]. 2021-06-08. | |
20 | 郭育菁, 慕秀松, 周俊波, 等. 中小型工业化碱性水溶液制氢电解槽设计[J]. 化学工程, 2020, 48(9): 70-73. |
Guo Y J, Mu X S, Zhou J B, et al. Design of hydrogen production cell for small and medium-sized industrial alkaline aqueous solution[J]. Chemical Engineering (China), 2020, 48(9): 70-73. | |
21 | 郭育菁, 刘勇. 一种可控快速升温电解水制氢系统: 110670087A[P]. 2020-01-10. |
Guo Y J, Liu Y. Controllable rapid heating water electrolysis system for producing hydrogen: 110670087A[P]. 2020-01-10. | |
22 | Duc T N, Goshome K, Endo N, et al. Optimization strategy for high efficiency 20 kW-class direct coupled photovoltaic-electrolyzer system based on experiment data[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26741-26752. |
23 | Oruc M E, Desai A V, Kenis P J A, et al. Comprehensive energy analysis of a photovoltaic thermal water electrolyzer[J]. Applied Energy, 2016, 164: 294-302. |
24 | Bilbao D C. Valorization of the waste heat given off in a system alkaline electrolyzer-photovoltaic array to improve hydrogen production performance: case study Antofagasta, Chile[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31108-31121. |
25 | Wang J Y, Wang Z, Zhou D, et al. Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems[J]. Energy, 2019, 188: 116005. |
26 | 丁锐. 钢铁企业余热回收利用措施探讨[J]. 当代化工研究, 2022(1): 120-122. |
Ding R. Discussion on waste heat recovery and utilization measures in iron and steel enterprises[J]. Modern Chemical Research, 2022(1): 120-122. | |
27 | 朱家玲, 刘国强, 张伟. 利用第二类吸收式热泵回收地热余热的模拟研究[J]. 太阳能学报, 2007, 28(7): 745-750. |
Zhu J L, Liu G Q, Zhang W. The simulation of recovering geothermal waste heat using absorption heat transformer[J]. Acta Energiae Solaris Sinica, 2007, 28(7): 745-750. | |
28 | 焦华. 第二类吸收式热泵在炼厂余热领域的应用[D]. 辽宁: 大连理工大学, 2012. |
Jiao H. Application of absorption heat transformer for refinery waste heat[D]. Liaoning: Dalian University of Technology, 2012. | |
29 | 鲁敦放. 太阳能驱动第二类吸收式热泵海水淡化[D]. 安徽: 中国科学技术大学, 2019. |
Lu D F. Desalination based on absorption heat transformer powered by solar energy[D]. Anhui: University of Science and Technology of China, 2019. | |
30 | Zheng W D, Yang J, Zhang H. Simulation and optimization of steam operated double effect water-LiBr absorption heat pump[J]. Applied Thermal Engineering, 2016, 109: 454-465. |
1 | Abderezzak B. Introduction to Transfer Phenomena in PEM Fuel Cell[M]. Amsterdam: Elsevier, 2018: 125-153. |
2 | Fuel Cells and Hydrogen 2 Undertaking Joint. Hydrogen road map Europe: a sustainable pathway for the European energy transition[EB/OL]. Luxembourg: Publications Office of the European Union. 2019-02. |
3 | 程一步, 王晓明, 李杨楠, 等. 中国氢能产业2020年发展综述及未来展望[J]. 当代石油石化, 2021, 29(4): 10-17. |
Cheng Y B, Wang X M, Li Y N, et al. China's hydrogen energy industry in 2020 and future prospects[J]. Petroleum & Petrochemical Today, 2021, 29(4): 10-17. | |
4 | 李建林, 李光辉, 梁丹曦, 等.“双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 8-10. |
Li J L, Li G H, Liang D X, et al. Overview and future outlook of hydrogen production technology by renewable energy source with the goal of peak carbon dioxide emissions and carbon neutral[J]. Distributed Energy, 2021, 6(5): 8-10. | |
5 | 田江南, 蒋晶, 罗扬, 等. 绿色氢能技术发展现状与趋势[J]. 分布式能源, 2021, 6(2): 8-13. |
Tian J N, Jiang J, Luo Y, et al. Development status and trend of green hydrogen energy technology[J]. Distributed Energy, 2021, 6(2): 8-13. | |
6 | Zini G, Tartarini P. Solar Hydrogen Energy Systems: Science and Technology for the Hydrogen Economy[M]. Milan: Springer, 2012. |
7 | 周后伍. 电解制氢供气供热装置: 2842283[P]. 2006-11-29. |
Zhou H W. Electrolysis hydrogen-producing gas-heat-supplying apparatus: 2842283[P]. 2006-11-29. | |
8 | 万燕明, 熊亚林, 刘坚强, 等. 中国氢能源及燃料电池产业白皮书[R]. 中国氢能联盟, 2019. |
31 | Wu W, Zhai C, Huang S M. A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures[J]. Energy, 2022, 239: 122180. |
32 | 刘明义, 许世森, 郑建涛, 等. 一种电解水制氢气体压缩热回收利用系统: 205295483U[P]. 2016-06-08. |
Liu M Y, Xu S S, Zheng J T, et al. Water electrolysis hydrogen gas compression heat recovery system: 205295483U[P]. 2016-06-08. | |
33 | 张材. 中压水电解制氢工艺指标异常治理与探讨[J]. 石化技术, 2018, 25(9): 224. |
Zhang C. Treatment and discussion on abnormal process index of hydrogen production by medium pressure water electrolysis[J]. Petrochemical Industry Technology, 2018, 25(9): 224. | |
34 | Engineers Air-Conditioning. 2013 ASHRAE Handbook: Fundamentals[M/OL]. Washington D.C.: ASHRAE, 2013. |
35 | 田江南, 张恬, 吴宇晨, 等. 一种电解水制氢系统的换热系统: 212983069U[P]. 2021-04-16. |
Tian J N, Zhang T, Wu Y C, et al. Heat exchange system of electrolyzed water hydrogen production system: 212983069U[P]. 2021-04-16. |
[1] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[2] | Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components [J]. CIESC Journal, 2023, 74(S1): 154-160. |
[3] | Keqing ZHENG, Ya SUN, Yangtian YAN, Li LI, Jun YANG. Numerical simulation of novel SOFC interconnector with thermoelectric co-enhancement [J]. CIESC Journal, 2022, 73(12): 5572-5580. |
[4] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
[5] | LIANG Kunfeng, WANG Moran, GAO Meijie, LYU Zhenwei, XU Hongyu, DONG Bin, GAO Fengling. Thermodynamic analysis of performance of integrated thermal management system for pure electric vehicle [J]. CIESC Journal, 2021, 72(S1): 494-502. |
[6] | SHAN He, MA Qiuming, PAN Quanwen, CAO Weiliang, WANG Qiang, WANG Ruzhu. Simulation of heat transfer performance in the coolant side of a novel chiller for electric vehicles thermal management system [J]. CIESC Journal, 2021, 72(S1): 194-202. |
[7] | MA Qiuming, NIE Lei, PAN Quanwen, SHAN He, CAO Weiliang, WANG Qiang, WANG Ruzhu. Heat exchange performance of a battery chiller for electric vehicles [J]. CIESC Journal, 2021, 72(S1): 170-177. |
[8] | Kunfeng LIANG, Guoqiang MI, Hongyu XU, Chunyan GAO, Bin DONG, Yachao LI, Moran WANG. Performance analysis and optimization of two-way thermal management system for power battery [J]. CIESC Journal, 2021, 72(8): 4146-4154. |
[9] | ZHANG Hao, DONG Yong, LAI Yanhua, CUI Lin, YANG Xiao. Simulation and experimental analysis on dehumidification and white smoke removal of coal-fired flue gas in falling-film plate used in WESP [J]. CIESC Journal, 2021, 72(4): 2249-2257. |
[10] | YI Tongxin, ZHANG Lei, DU Jian. Computer-aided molecular design of new organic working pairs in absorption heat pump cycle [J]. CIESC Journal, 2021, 72(3): 1457-1464. |
[11] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[12] | Desheng MA, Liping PANG, Xiaodong MAO, Sujun DONG. Thermal management of airborne integrated environmental control system [J]. CIESC Journal, 2020, 71(S1): 436-440. |
[13] | Huicai MA, Yiling LIU, Xiaomin DANG. Configuration analysis of integrated thermal management about high altitude long-endurance unmanned aerial vehicle [J]. CIESC Journal, 2020, 71(S1): 417-424. |
[14] | Rong A, Liping PANG, Dongsheng YANG, Bin QI. Design and optimization of integrated thermal management system for high-speed aircraft [J]. CIESC Journal, 2020, 71(S1): 315-321. |
[15] | Yicong TIAN, Jiao GAO, Yunfei LI, Liwei WANG, Guoliang AN. Simulation and test of solid sorption vehicle air-conditioning system driven by exhaust heat [J]. CIESC Journal, 2020, 71(8): 3691-3698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||