CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 823-835.DOI: 10.11949/0438-1157.20231236
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yansong CHEN(), Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA()
Received:
2023-12-01
Revised:
2024-01-18
Online:
2024-05-11
Published:
2024-03-25
Contact:
Xuehu MA
陈彦松(), 阮达, 刘渊博, 郑通, 张帅帅, 马学虎()
通讯作者:
马学虎
作者简介:
陈彦松(1992—),男,博士研究生,18842686719@163.com
基金资助:
CLC Number:
Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers[J]. CIESC Journal, 2024, 75(3): 823-835.
陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835.
Add to citation manager EndNote|Ris|BibTeX
案例编号 | ||
---|---|---|
组Ⅰ(1~10) | 1~10 | |
组Ⅱ(1~10) | 1~10 | |
组Ⅲ(1~10) | 1~10 | |
组Ⅳ(1~10) | 1~10 |
Table 1 Parameters for different cases
案例编号 | ||
---|---|---|
组Ⅰ(1~10) | 1~10 | |
组Ⅱ(1~10) | 1~10 | |
组Ⅲ(1~10) | 1~10 | |
组Ⅳ(1~10) | 1~10 |
物质名称 | 动力黏度 | 密度 | 热导率 | 比等压热容 | 入口压力/Pa | ||
---|---|---|---|---|---|---|---|
液态金属 | 0.0024 | 6440 | 16.5 | 200 | 0.029 | 996.9 | 9.085 |
水 | 0.0010 | 998 | 0.600 | 4180 | 6.99 | 1000.0 | 10.24 |
FC40 (3M) | 0.0041 | 1855 | 0.065 | 1100 | 69.4 | 997.8 | 92.05 |
乙二醇 | 0.0214 | 1116.5 | 0.2495 | 2383 | 204.6 | 995.8 | 4172 |
Table 2 Physical parameters and boundary conditions for different fluid media
物质名称 | 动力黏度 | 密度 | 热导率 | 比等压热容 | 入口压力/Pa | ||
---|---|---|---|---|---|---|---|
液态金属 | 0.0024 | 6440 | 16.5 | 200 | 0.029 | 996.9 | 9.085 |
水 | 0.0010 | 998 | 0.600 | 4180 | 6.99 | 1000.0 | 10.24 |
FC40 (3M) | 0.0041 | 1855 | 0.065 | 1100 | 69.4 | 997.8 | 92.05 |
乙二醇 | 0.0214 | 1116.5 | 0.2495 | 2383 | 204.6 | 995.8 | 4172 |
6.11 | 24.19 | 3.08 | 1.51 | 1.08 | |
5.56 | 23.58 | 2.76 | 1.31 | 0.93 | |
5.20 | 23.10 | 2.58 | 1.20 | 0.85 | |
0 | 4.91 | 22.66 | 2.45 | 1.13 | 0.78 |
20 | 4.46 | 21.88 | 2.26 | 1.03 | 0.72 |
40 | 4.09 | 21.12 | 2.12 | 0.95 | 0.66 |
60 | 3.78 | 20.38 | 1.99 | 0.89 | 0.62 |
80 | 3.50 | 19.63 | 1.88 | 0.84 | 0.58 |
90 | 3.37 | 19.25 | 1.83 | 0.81 | 0.56 |
100 | 3.25 | 18.87 | 1.78 | 0.78 | 0.54 |
120 | 3.01 | 18.10 | 1.68 | 0.73 | 0.51 |
140 | 2.79 | 17.30 | 1.59 | 0.69 | 0.48 |
Table 3 Critical values of η of flow and heat transfer boundary layer at fully developed conditions for different wedge angles
6.11 | 24.19 | 3.08 | 1.51 | 1.08 | |
5.56 | 23.58 | 2.76 | 1.31 | 0.93 | |
5.20 | 23.10 | 2.58 | 1.20 | 0.85 | |
0 | 4.91 | 22.66 | 2.45 | 1.13 | 0.78 |
20 | 4.46 | 21.88 | 2.26 | 1.03 | 0.72 |
40 | 4.09 | 21.12 | 2.12 | 0.95 | 0.66 |
60 | 3.78 | 20.38 | 1.99 | 0.89 | 0.62 |
80 | 3.50 | 19.63 | 1.88 | 0.84 | 0.58 |
90 | 3.37 | 19.25 | 1.83 | 0.81 | 0.56 |
100 | 3.25 | 18.87 | 1.78 | 0.78 | 0.54 |
120 | 3.01 | 18.10 | 1.68 | 0.73 | 0.51 |
140 | 2.79 | 17.30 | 1.59 | 0.69 | 0.48 |
1 | van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211-216. |
2 | Schlichting H, Gersten K. Thermal boundary layers with coupling of the velocity field to the temperature field[M]// Boundary-Layer Theory. Berlin, Heidelberg: Springer, 2017: 231-290. |
3 | Maghrabie H M, Olabi A G, Sayed E T, et al. Microchannel heat sinks with nanofluids for cooling electronic components: performance enhancement, challenges, and limitations[J]. Thermal Science and Engineering Progress, 2023, 37: 101608. |
4 | Mohammed Adham A, Mohd-Ghazali N, Ahmad R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 614-622. |
5 | Bhandari P, Rawat K S, Prajapati Y K, et al. Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review[J]. Journal of Energy Storage, 2023, 66: 107548. |
6 | Sahel D, Bellahcene L, Yousfi A, et al. Numerical investigation and optimization of a heat sink having hemispherical pin fins[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105133. |
7 | Tan H, Zong K, Du P G. Temperature uniformity in convective leaf vein-shaped fluid microchannels for phased array antenna cooling[J]. International Journal of Thermal Sciences, 2020, 150: 106224. |
8 | Al-Neama A F, Khatir Z, Kapur N, et al. An experimental and numerical investigation of chevron fin structures in serpentine minichannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1213-1228. |
9 | Wang J, Wang H. Flow-field designs of bipolar plates in PEM fuel cells: theory and applications[J]. Fuel Cells, 2012, 12(6): 989-1003. |
10 | Sharma C S, Tiwari M K, Zimmermann S, et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138: 414-422. |
11 | Ditri J, Hahn J, Cadotte R, et al. Embedded cooling of high heat flux electronics utilizing distributed microfluidic impingement jets[C]//Proceedings of ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. San Francisco, 2015. |
12 | Fawaz A, Hua Y C, Le Corre S, et al. Topology optimization of heat exchangers: a review[J]. Energy, 2022, 252: 124053. |
13 | Bendsϕe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
14 | Borrvall T, Petersson J. Topology optimization of fluids in Stokes flow[J]. International Journal for Numerical Methods in Fluids, 2003, 41(1): 77-107. |
15 | Gersborg-Hansen A, Sigmund O, Haber R B. Topology optimization of channel flow problems[J]. Structural and Multidisciplinary Optimization, 2005, 30(3): 181-192. |
16 | Dede E M. Optimization and design of a multipass branching microchannel heat sink for electronics cooling[J]. Journal of Electronic Packaging, 2012, 134(4): 041001. |
17 | Lin S, Zhao L Y, Guest J K, et al. Topology optimization of fixed-geometry fluid diodes[J]. Journal of Mechanical Design, 2015, 137(8): 081402. |
18 | Makhija D, Pingen G, Yang R G, et al. Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method[J]. Computers and Fluids, 2012, 67: 104-114. |
19 | Xia Y, Chen L, Luo J W, et al. Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization[J]. Applied Energy, 2023, 330: 120335. |
20 | Matsumori T, Kondoh T, Kawamoto A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 571-581. |
21 | Yaji K, Yamada T, Kubo S, et al. A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions[J]. International Journal of Heat and Mass Transfer, 2015, 81: 878-888. |
22 | Yu M H, Ruan S L, Wang X Y, et al. Topology optimization of thermal-fluid problem using the MMC-based approach[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 151-165. |
23 | Haertel J H K, Engelbrecht K, Lazarov B S, et al. Topology optimization of a pseudo 3D thermofluid heat sink model[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1073-1088. |
24 | Yan S N, Wang F W, Hong J, et al. Topology optimization of microchannel heat sinks using a two-layer model[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118462. |
25 | Zhao J Q, Zhang M, Zhu Y, et al. Topology optimization of planar cooling channels using a three-layer thermofluid model in fully developed laminar flow problems[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2789-2809. |
26 | Haertel J H K, Nellis G F. A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers[J]. Applied Thermal Engineering, 2017, 119: 10-24. |
27 | Zeng S, Sun Q Z, Lee P S. Thermohydraulic analysis of a new fin pattern derived from topology optimized heat sink structures[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118909. |
28 | Kambampati S, Gray J S, Kim H A. Level set topology optimization of load carrying battery packs[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121570. |
29 | Zou A Q, Chuan R, Qian F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[J]. Applied Thermal Engineering, 2022, 207: 118128. |
30 | Zhou J H, Lu M X, Zhao Q, et al. Thermal design of microchannel heat sinks using a contour extraction based on topology optimization (CEBTO) method[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122703. |
31 | Dilgen S B, Dilgen C B, Fuhrman D R, et al. Density based topology optimization of turbulent flow heat transfer systems[J]. Structural and Multidisciplinary Optimization, 2018, 57(5): 1905-1918. |
32 | Lazarov B S, Sigmund O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. |
33 | Chen Y S, Zhang S S, Liu Y B, et al. On the reticulate pattern and heat transfer performance of the topologically optimized microchannel heat sink[J]. Applied Thermal Engineering, 2024, 239: 122137. |
34 | Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer-a review and update[J]. International Journal of Heat and Mass Transfer, 2013, 63: 65-81. |
35 | 刘伟. 基于协同与耗散的能质传输理论 [J]. 中国科学:技术科学, 2023, 53: 1-11. |
Liu W. The theory of macroscopic energy and mass transport based on the synergy and dissipation analysis[J]. Scientia Sinica Technologica, 2023, 53: 1-11. | |
36 | Ghiaasiaan S M. Convective Heat and Mass Transfer[M]. Cambridge: Cambridge University Press, 2011. |
[1] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[2] | Shirong SONG, Hongchen LIU, Xiaotian MI, Chao XU, Mei YANG, Chaoqun YAO. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel [J]. CIESC Journal, 2024, 75(2): 566-574. |
[3] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[4] | Weigu WEN, Zhihong YUAN, Kai WANG, Guangsheng LUO. Microdispersion droplet optical fiber detection [J]. CIESC Journal, 2024, 75(1): 211-220. |
[5] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[6] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[7] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[8] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[9] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[10] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[11] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||