CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2544-2555.DOI: 10.11949/0438-1157.20231130
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jingru HUANG(), Jiaxuan CHEN, Qunfeng ZHANG, Jin RUAN, Lai ZHU, Guanghua YE(
), Xinggui ZHOU
Received:
2023-11-02
Revised:
2024-04-09
Online:
2024-08-09
Published:
2024-07-25
Contact:
Guanghua YE
黄静茹(), 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华(
), 周兴贵
通讯作者:
叶光华
作者简介:
黄静茹(1999—),女,硕士研究生,y30210011@mail.ecust.edu.cn
基金资助:
CLC Number:
Jingru HUANG, Jiaxuan CHEN, Qunfeng ZHANG, Jin RUAN, Lai ZHU, Guanghua YE, Xinggui ZHOU. Effect of ZSM-5 zeolite structure on the reaction performance of benzene alkylation: a computational study[J]. CIESC Journal, 2024, 75(7): 2544-2555.
黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555.
参数 | 数值 |
---|---|
温度T/K | 653 |
压力P/bar | 5 |
苯和乙烯摩尔比 | 5∶1 |
单胞密度/(mol·m-3) | 309.50 |
正反应速率常数k1/s-1 | 696 |
逆反应速率常数k-1/s-1 | 0.137 |
乙烯扩散系数DE,0/(m2·s-1) | 99.5×10-13 |
苯扩散系数DB,0/(m2·s-1) | 2.0×10-13 |
乙苯扩散系数DE+B,0/(m2·s-1) | 1.6×10-13 |
Table 1 Parameters used in simulations
参数 | 数值 |
---|---|
温度T/K | 653 |
压力P/bar | 5 |
苯和乙烯摩尔比 | 5∶1 |
单胞密度/(mol·m-3) | 309.50 |
正反应速率常数k1/s-1 | 696 |
逆反应速率常数k-1/s-1 | 0.137 |
乙烯扩散系数DE,0/(m2·s-1) | 99.5×10-13 |
苯扩散系数DB,0/(m2·s-1) | 2.0×10-13 |
乙苯扩散系数DE+B,0/(m2·s-1) | 1.6×10-13 |
条件 | 球形 | 立方形 | 药片形 | 棺形 |
---|---|---|---|---|
颗粒体积一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1612 nm h=1612 nm l=1612 nm L=V/S=269 nm | m=1612 nm h=1612 nm l=1874 nm n=486 nm L=V/S=288 nm | m=1612 nm h=1612 nm l=2077 nm n=465 nm L=V/S=281 nm | |
颗粒表面积 一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1447 nm h=1447 nm l=1447 nm L=V/S=241 nm | m=1498.5 nm h=1498.5 nm l=1742 nm n=435.5 nm L=V/S=268 nm | m=1481 nm h=1481 nm l=1908 nm n=427 nm L=V/S=258 nm |
Table 2 Structural parameters of the ZSM-5 particles with different shapes
条件 | 球形 | 立方形 | 药片形 | 棺形 |
---|---|---|---|---|
颗粒体积一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1612 nm h=1612 nm l=1612 nm L=V/S=269 nm | m=1612 nm h=1612 nm l=1874 nm n=486 nm L=V/S=288 nm | m=1612 nm h=1612 nm l=2077 nm n=465 nm L=V/S=281 nm | |
颗粒表面积 一致 | ![]() | ![]() | ![]() | ![]() |
l=2000 nm L=V/S=333 nm | m=1447 nm h=1447 nm l=1447 nm L=V/S=241 nm | m=1498.5 nm h=1498.5 nm l=1742 nm n=435.5 nm L=V/S=268 nm | m=1481 nm h=1481 nm l=1908 nm n=427 nm L=V/S=258 nm |
Fig.4 Concentration distributions of ethylene and ethylbenzene in the ZSM-5 particles with different morphologies when the particle surface area is consistent (the displayed parts are 1/8 of each shape)
Fig.6 Concentration distributions of ethylene and ethylbenzene in the ZSM-5 particles with different a, b, c-axis lengths (a×b×c) (the displayed parts are 1/8 of each shape)
Fig.8 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different particle sizes (the displayed parts are 1/8 of each shape)
Fig.10 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different macropore sizes (the displayed planes are perpendicular to macropore direction and in the middle of the zeolite particles)
Fig.12 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different macroporosities (the displayed planes are perpendicular to macropore direction and in the middle of the zeolite particles)
Fig.14 Concentration distributions of ethylene and ethylbenzene in the cubic ZSM-5 particles with different macropore orientations (the displayed parts are 1/8 of each shape)
1 | 高俊华, 张立东, 胡津仙, 等. 改性ZSM-5上苯与乙醇烷基化反应条件的考察及再生评价[J]. 化工进展, 2008, 27(11): 1800-1804. |
Gao J H, Zhang L D, Hu J X, et al. Study on experimental conditions and regeneration performance of modified ZSM-5 in benzene alkylation with ethanol[J]. Chemical Industry and Engineering Progress, 2008, 27(11): 1800-1804. | |
2 | Mimura N, Saito M. Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide[J]. Catalysis Letters, 1999, 58(1): 59-62. |
3 | Al-Kinany M C, Al-Megren H A, Al-Ghilan E A, et al. Selective zeolite catalyst for alkylation of benzene with ethylene to produce ethylbenzene[J]. Applied Petrochemical Research, 2012, 2(3): 73-83. |
4 | Al-Zahrani S M, Al-Khattaf S S. Advances in development and industrial applications of ethylbenzene production processes[J]. Chinese Journal of Chemical Engineering, 2016, 37(1): 16-26. |
5 | 杨为民, 王振东, 孙洪敏, 等. 乙苯工艺技术开发及工业应用进展[J]. 催化学报, 2016, 37(1): 16-26. |
Yang W M, Wang Z D, Sun H M, et al. Advances in development and industrial applications of ethylbenzene processes[J]. Chinese Journal of Catalysis, 2016, 37(1): 16-26. | |
6 | 程挥戈, 牛韦, 汤兴蕾, 等. 乙烷与苯经接力催化路线制备乙苯[J]. 化工学报, 2021, 72(7): 3658-3667. |
Cheng H G, Niu W, Tang X L, et al. Synthesis of ethylbenzene from ethane and benzene by tandem catalysis[J]. CIESC Journal, 2021, 72(7): 3658-3667. | |
7 | 李建伟, 王嘉, 刘学玲, 等. 催化干气制乙苯第三代技术的工业应用[J]. 化工进展, 2010, 29(9): 1790-1795. |
Li J W, Wang J, Liu X L, et al. Industrial application of ethylbenzene production technology from FCC dry gas[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1790-1795. | |
8 | 程志林, 赵训志, 邢淑建. 乙苯生产技术及催化剂研究进展[J]. 工业催化, 2007, 15(7): 4-9. |
Cheng Z L, Zhao X Z, Xing S J. Researches in ethylbenzene production technique and catalysts[J]. Industrial Catalysis, 2007, 15(7): 4-9. | |
9 | Tian H, Liu S, Liu Q. HZSM-5 zeolite modification and catalytic reaction mechanism in the reaction of cyclohexene hydration[J]. RSC Advances, 2022, 12(38): 24654-24669. |
10 | 杨为民, 孙洪敏, 陈庆龄. 苯与乙烯气相烷基化制乙苯用分子筛催化剂的研制[J]. 精细石油化工进展, 2002, 3(4): 12-14. |
Yang W M, Sun H M, Chen Q L. Development of zeolite-base catalysts for preparing ethylbenzene from benzene and ethylene by vapor phase alkylation[J]. Advances in Fine Fetrochemicals, 2002, 3(4): 12-14. | |
11 | 王岳, 李凤艳, 赵天波, 等. 纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能[J]. 石油化工高等学校学报, 2005, 18(4): 20-23, 4. |
Wang Y, Li F Y, Zhao T B, et al. Synthesis and characterization of nanoparticle ZSM-5 zeolite and catalytic properties of toluene disproportionation[J]. Journal of Petrochemical Universities, 2005, 18(4): 20-23, 4. | |
12 | Zhang J X, Zhou A J, Gawande K, et al. b-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion[J]. ACS Catalysis, 2023, 13(6): 3794-3805. |
13 | Yuan P, Wang H, Xue Y F, et al. Catalytic properties of different crystal sizes for ZSM-5 zeolites on the alkylation of benzene with methanol and optimization of the reaction conditions[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1775-1784. |
14 | Jin R Z, Ma K, Xu S T, et al. Effect of acid distribution and pore structure of ZSM-5 on catalytic performance[J]. Reaction Chemistry & Engineering, 2022, 7(10): 2152-2162. |
15 | Wang Q T, Han W W, Hu H L, et al. Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1777-1783. |
16 | Hansen N, Brüggemann T, Bell A T, et al. Theoretical investigation of benzene alkylation with ethene over H-ZSM-5[J]. The Journal of Physical Chemistry C, 2008, 112(39): 15402-15411. |
17 | Hansen N, Kerber T, Sauer J, et al. Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study[J]. Journal of the American Chemical Society, 2010, 132(33): 11525-11538. |
18 | Hansen N, Krishna R, van Baten J M, et al. Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: a multiscale approach[J]. Chemical Engineering Science, 2010, 65(8): 2472-2480. |
19 | Li H, Ye M, Liu Z M. A multi-region model for reaction-diffusion process within a porous catalyst pellet[J]. Chemical Engineering Science, 2016, 147: 1-12. |
20 | Rao S M, Saraçi E, Gläser R, et al. Surface barriers as dominant mechanism to transport limitations in hierarchically structured catalysts-application to the zeolite-catalyzed alkylation of benzene with ethylene[J]. Chemical Engineering Journal, 2017, 329: 45-55. |
21 | Rosen G. The mathematical theory of diffusion and reaction in permeable catalysts[J]. Bulletin of Mathematical Biology, 1976, 38(1): 95-96. |
22 | Krishna R, Paschek D, Baur R. Modeling the occupancy dependence of diffusivities in zeolites[J]. Microporous and Mesoporous Materials, 2004, 76(1/2/3): 233-246. |
23 | Krishna R, van Baten J M. Effect of pore size and shape on the self-diffusivity of methane in silicalite-1 and ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2008, 109(1/2/3): 91-97. |
24 | Krishna R, van Baten J M, García-Pérez E, et al. Adsorption equilibrium and kinetics of methane and ethane in silicalite-1 and ZSM-5 zeolites: a molecular simulation study[J]. Industrial & Engineering Chemistry Research, 2007, 46(9): 2974-2982. |
25 | Hansen N, Krishna R, van Baten J M, et al. Analysis of diffusion limitation in the alkylation of benzene over H-ZSM-5 by combining quantum chemical calculations, molecular simulations, and a continuum approach[J]. The Journal of Physical Chemistry C, 2009, 113(1): 235-246. |
26 | Caro J, Noack M, Richter Mendau J, et al. Selective sorption uptake kinetics of n-hexane on ZSM 5-A new method for measuring anisotropic diffusivities[J]. The Journal of Physical Chemistry, 1993, 97(51): 13685-13690. |
27 | Langmuir I. The constitution and fundamental properties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 183(1): 102-105. |
28 | Christensen C H, Johannsen K, Schmidt I, et al. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials[J]. Journal of the American Chemical Society, 2003, 125(44): 13370-13371. |
29 | Xue T, Wang Y M, He M Y. Facile synthesis of nano-sized NH4-ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2012, 156: 29-35. |
30 | Mintova S, Gilson J P, Valtchev V. Advances in nanosized zeolites[J]. Nanoscale, 2013, 5(15): 6693-6703. |
31 | Fodor D, Pacosová L, Krumeich F, et al. Facile synthesis of nano-sized hollow single crystal zeolites under mild conditions[J]. Chemical Communications, 2014, 50(1): 76-78. |
32 | Schreiber M W, Rodriguez-Niño D, Gutiérrez O Y, et al. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites[J]. Catalysis Science & Technology, 2016, 6(22): 7976-7984. |
33 | Sun M H, Gao S S, Hu Z Y, et al. Boosting molecular diffusion following the generalized Murray’s law by constructing hierarchical zeolites for maximized catalytic activity[J]. National Science Review, 2022, 9(12): nwac236. |
34 | Li S, Yang H, Wang S, et al. Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology[J]. Chem. Commun., 2022, 58(13): 2041-2054. |
35 | Zhang K, Fernandez S, O’Brien J T, et al. Organotemplate-free synthesis of hierarchical beta zeolites[J]. Catalysis Today, 2018, 316: 26-30. |
[1] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[2] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[3] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[4] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[5] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[6] | Guang YANG, Xin CHENG, Zheng WANG, Ye WANG, Liangjun ZHANG, Jingyi WU. Analytical prediction model of permeability for rarefied gas flow in porous structures with micro or nanopores [J]. CIESC Journal, 2022, 73(7): 2895-2901. |
[7] | Ye WANG, Wanyu ZHANG, Bin WANG, Rui ZHUAN, Feng REN, Aifeng CAI, Guang YANG, Jingyi WU. Analytical model of bubble point pressure for metal wire screens and experimental validation [J]. CIESC Journal, 2022, 73(3): 1102-1110. |
[8] | Junjun GU, Rui LI, Xingyi WU, Xianqiang TANG, Yanping HU. Study on the control effect of electrokinetic drainage of pore water on nitrogen release flux at the mud-water interface [J]. CIESC Journal, 2022, 73(11): 5118-5127. |
[9] | Xi ZHENG, Tao WANG, Yongsheng REN, Zhenzhen ZHAO, Xueqi WANG, Zhiping ZHAO. Preparation and properties research of poly(m-phenylene isophthalamide) flat-sheet membrane [J]. CIESC Journal, 2022, 73(10): 4707-4721. |
[10] | Huiyan WANG, Yiqin CHEN, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization [J]. CIESC Journal, 2022, 73(1): 376-383. |
[11] | Jiahao LIANG, Guoqiang ZHANG, Yuan GAO, Jiao YIN, Huayan ZHENG, Zhong LI. Effect of mesoporous construction on catalytic performance of CuY methanol oxidative carbonylation [J]. CIESC Journal, 2021, 72(9): 4685-4697. |
[12] | LIU Zhen, DU Huadong, HU Xu, JI Zhongli. Experimental investigation of influence of high-pressure condition on filtration performance of natural gas filter cartridge [J]. CIESC Journal, 2021, 72(5): 2669-2679. |
[13] | HUANG Wenyuan, SUN Shijie, TANG Hongzhen, SU Zhifang, ZHONG Qindi, LIU Youyan, LI Qingyun. Phenol removal by the Alcaligenes sp. DN25 immobilized on the polyurethane foams [J]. CIESC Journal, 2021, 72(5): 2783-2791. |
[14] | WEI Juan, WANG Yujun, LUO Guangsheng. Influence of pore volume and heating process on preparation of aluminum nitride powder by carbothermal reduction method [J]. CIESC Journal, 2021, 72(2): 1156-1168. |
[15] | SUI Baokuan, SHI Yao, LIN Jianyang, LIU Wenjie, YUAN Shenghua, GENG Xinguo, DUAN Xuezhi. Impacts of calcination atmosphere and pore structure on performance of hydrodemetallization catalysts [J]. CIESC Journal, 2021, 72(2): 993-1000. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||