CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3198-3209.DOI: 10.11949/0438-1157.20240115
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Ran WANG1(), Huan WANG2, Xiaoyun XIONG3, Huimin GUAN1, Yunfeng ZHENG3, Cailin CHEN1, Yucai QIN1(
), Lijuan SONG1,2
Received:
2024-01-25
Revised:
2024-05-19
Online:
2024-10-10
Published:
2024-09-25
Contact:
Yucai QIN
王冉1(), 王焕2, 熊晓云3, 关慧敏1, 郑云锋3, 陈彩琳1, 秦玉才1(
), 宋丽娟1,2
通讯作者:
秦玉才
作者简介:
王冉(1998—),女,硕士研究生,2248409310@qq.com
基金资助:
CLC Number:
Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst[J]. CIESC Journal, 2024, 75(9): 3198-3209.
王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209.
样品 | 比表 面积/ (m2·g-1) | 微孔 面积/ (m2·g-1) | 介孔 面积/(m2·g-1) | 总孔 体积/(cm3·g-1) | 微孔 体积/(cm3·g-1) | 介孔 体积/(cm3·g-1) |
---|---|---|---|---|---|---|
CAT-1 | 156 | 88 | 68 | 0.167 | 0.046 | 0.121 |
CAT-2 | 186 | 95 | 91 | 0.198 | 0.050 | 0.148 |
CAT-3 | 188 | 95 | 93 | 0.202 | 0.050 | 0.152 |
CAT-4 | 185 | 98 | 87 | 0.218 | 0.056 | 0.162 |
CAT-5 | 190 | 101 | 89 | 0.229 | 0.059 | 0.170 |
CAT-6 | 193 | 104 | 88 | 0.248 | 0.061 | 0.187 |
Table 1 Texture property parameters of six catalyst samples
样品 | 比表 面积/ (m2·g-1) | 微孔 面积/ (m2·g-1) | 介孔 面积/(m2·g-1) | 总孔 体积/(cm3·g-1) | 微孔 体积/(cm3·g-1) | 介孔 体积/(cm3·g-1) |
---|---|---|---|---|---|---|
CAT-1 | 156 | 88 | 68 | 0.167 | 0.046 | 0.121 |
CAT-2 | 186 | 95 | 91 | 0.198 | 0.050 | 0.148 |
CAT-3 | 188 | 95 | 93 | 0.202 | 0.050 | 0.152 |
CAT-4 | 185 | 98 | 87 | 0.218 | 0.056 | 0.162 |
CAT-5 | 190 | 101 | 89 | 0.229 | 0.059 | 0.170 |
CAT-6 | 193 | 104 | 88 | 0.248 | 0.061 | 0.187 |
样品 | 弱酸量/ (mmol·g-1) | 中强酸量/ (mmol·g-1) | 强酸量/ (mmol·g-1) |
---|---|---|---|
CAT1 | 4.07 | 11.55 | 15.70 |
CAT2 | 4.11 | 12.45 | 15.79 |
CAT3 | 5.10 | 14.09 | 16.70 |
CAT-4 | 5.98 | 16.75 | 18.87 |
CAT-5 | 6.58 | 21.37 | 18.99 |
CAT-6 | 6.50 | 21.77 | 19.41 |
Table 2 Quantitative data on acid density distribution of six FCC catalysts
样品 | 弱酸量/ (mmol·g-1) | 中强酸量/ (mmol·g-1) | 强酸量/ (mmol·g-1) |
---|---|---|---|
CAT1 | 4.07 | 11.55 | 15.70 |
CAT2 | 4.11 | 12.45 | 15.79 |
CAT3 | 5.10 | 14.09 | 16.70 |
CAT-4 | 5.98 | 16.75 | 18.87 |
CAT-5 | 6.58 | 21.37 | 18.99 |
CAT-6 | 6.50 | 21.77 | 19.41 |
样品 | 酸量/(mmol·g-1) | |||
---|---|---|---|---|
150℃ | 400℃ | |||
B酸 | L酸 | B酸 | L酸 | |
CAT-1 | 0.065 | 0.064 | 0.043 | 0.010 |
CAT-2 | 0.069 | 0.070 | 0.047 | 0.014 |
CAT-3 | 0.087 | 0.071 | 0.067 | 0.010 |
CAT-4 | 0.072 | 0.082 | 0.056 | 0.009 |
CAT-5 | 0.086 | 0.135 | 0.057 | 0.005 |
CAT-6 | 0.089 | 0.137 | 0.061 | 0.010 |
Table 3 Catalyst acidity
样品 | 酸量/(mmol·g-1) | |||
---|---|---|---|---|
150℃ | 400℃ | |||
B酸 | L酸 | B酸 | L酸 | |
CAT-1 | 0.065 | 0.064 | 0.043 | 0.010 |
CAT-2 | 0.069 | 0.070 | 0.047 | 0.014 |
CAT-3 | 0.087 | 0.071 | 0.067 | 0.010 |
CAT-4 | 0.072 | 0.082 | 0.056 | 0.009 |
CAT-5 | 0.086 | 0.135 | 0.057 | 0.005 |
CAT-6 | 0.089 | 0.137 | 0.061 | 0.010 |
样品 | 时间/min | 时间/min | ||||
---|---|---|---|---|---|---|
萘穿透 | 菲穿透 | 吖啶穿透 | 萘饱和 | 菲饱和 | 吖啶饱和 | |
CAT-1 | 1.92 | 3.71 | 10.70 | 6.10 | 9.21 | 43.37 |
CAT-2 | 2.59 | 4.55 | 13.87 | 7.01 | 11.18 | 50.73 |
CAT-3 | 2.84 | 4.93 | 18.85 | 7.28 | 12.35 | 54.18 |
CAT-4 | 3.32 | 5.37 | 20.02 | 8.87 | 14.34 | 59.20 |
CAT-5 | 3.75 | 6.62 | 21.45 | 9.10 | 16.91 | 66.09 |
CAT-6 | 3.84 | 6.98 | 23.41 | 9.17 | 18.47 | 73.10 |
Table 4 Adsorption penetration and saturation time of naphthalene, phenanthrene and acridine on six catalyst samples
样品 | 时间/min | 时间/min | ||||
---|---|---|---|---|---|---|
萘穿透 | 菲穿透 | 吖啶穿透 | 萘饱和 | 菲饱和 | 吖啶饱和 | |
CAT-1 | 1.92 | 3.71 | 10.70 | 6.10 | 9.21 | 43.37 |
CAT-2 | 2.59 | 4.55 | 13.87 | 7.01 | 11.18 | 50.73 |
CAT-3 | 2.84 | 4.93 | 18.85 | 7.28 | 12.35 | 54.18 |
CAT-4 | 3.32 | 5.37 | 20.02 | 8.87 | 14.34 | 59.20 |
CAT-5 | 3.75 | 6.62 | 21.45 | 9.10 | 16.91 | 66.09 |
CAT-6 | 3.84 | 6.98 | 23.41 | 9.17 | 18.47 | 73.10 |
探针分子 | KCAT-1/min-1 | KCAT-2/min-1 | KCAT-3/min-1 | KCAT-4/min-1 | KCAT-5/min-1 | KCAT-6/min-1 |
---|---|---|---|---|---|---|
萘 | 1.3461 | 1.1570 | 1.1327 | 1.1145 | 1.0281 | 0.8897 |
菲 | 1.0907 | 0.9867 | 0.9335 | 0.8698 | 0.7798 | 0.7454 |
吖啶 | 0.2875 | 0.2562 | 0.2540 | 0.2531 | 0.2260 | 0.1950 |
Table 5 The adsorption rate constants of naphthene, phenanthrene and acridine for six catalyst samples obtained by fitting Yoon-Nelson model
探针分子 | KCAT-1/min-1 | KCAT-2/min-1 | KCAT-3/min-1 | KCAT-4/min-1 | KCAT-5/min-1 | KCAT-6/min-1 |
---|---|---|---|---|---|---|
萘 | 1.3461 | 1.1570 | 1.1327 | 1.1145 | 1.0281 | 0.8897 |
菲 | 1.0907 | 0.9867 | 0.9335 | 0.8698 | 0.7798 | 0.7454 |
吖啶 | 0.2875 | 0.2562 | 0.2540 | 0.2531 | 0.2260 | 0.1950 |
Fig.9 Fluorescence mapping of the maximum section surface of catalyst samples soaked in Rhodamine B probe (color bar displays the fluorescence intensity)
催化剂 | L18min/m | Deff/(m2·s-1) |
---|---|---|
CAT-1 | 1.76×10-5 | 2.72×10-15 |
CAT-2 | 2.16×10-5 | 3.63×10-15 |
CAT-3 | 2.63×10-5 | 6.04×10-15 |
CAT-4 | 3.01×10-5 | 1.10×10-14 |
CAT-5 | 3.22×10-5 | 1.65×10-14 |
CAT-6 | 3.69×10-5 | 6.68×10-14 |
Table 6 The diffusion coefficients of Rhodamine B in six catalyst samples calculated by the Fick’s first law
催化剂 | L18min/m | Deff/(m2·s-1) |
---|---|---|
CAT-1 | 1.76×10-5 | 2.72×10-15 |
CAT-2 | 2.16×10-5 | 3.63×10-15 |
CAT-3 | 2.63×10-5 | 6.04×10-15 |
CAT-4 | 3.01×10-5 | 1.10×10-14 |
CAT-5 | 3.22×10-5 | 1.65×10-14 |
CAT-6 | 3.69×10-5 | 6.68×10-14 |
1 | Vogt E T C, Weckhuysen B M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7342-7370. |
2 | 王铃. 2030年炼油催化剂市场规模将达到150亿美元[J]. 石油炼制与化工, 2023, 54(11): 33. |
Wang L. In 2030, the market size of refining catalyst will reach 15 billion US dollars[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 33. | |
3 | 张玉明, 纪德馨, 朱翰文, 等. 微型流化床中萘裂解生成小分子气体的反应动力学研究[J]. 化工学报, 2021, 72(5): 2604-2615. |
Zhang Y M, Ji D X, Zhu H W, et al. Reaction kinetics of naphthalene cracking into small molecule gas in a micro fluidized bed[J]. CIESC Journal, 2021, 72(5): 2604-2615. | |
4 | Fleury M, Pirngruber G, Jolimaitre E. Probing diffusional exchange in mesoporous zeolite by NMR diffusion and relaxation methods[J]. Microporous and Mesoporous Materials, 2023, 355: 112575. |
5 | Liu X L, Wang C M, Zhou J, et al. Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales[J]. Chemical Society Reviews, 2022, 51(19): 8174-8200. |
6 | 周鹏. 基质Lewis酸性调控及其催化轻烃裂化反应性能研究[D]. 徐州: 中国矿业大学, 2023. |
Zhou P. Lewis acidity regulation of matrix and its effects on the catalytic cracking of light hydrocarbons[D]. Xuzhou: China University of Mining and Technology, 2023. | |
7 | 洪梅, 高金强, 李彤, 等. 原位刻蚀调控多级孔分子筛策略及其应用进展[J]. 化学学报, 2023, 81(8): 937-948. |
Hong M, Gao J Q, Li T, et al. In-situ etching strategy for manipulation of hierarchical zeolite and its application[J]. Acta Chimica Sinica, 2023, 81(8): 937-948. | |
8 | 万艳春, 王玉军, 骆广生. 并流滴加法制备大孔容纤维状γ-氧化铝[J]. 化工学报, 2018, 69(11): 4840-4847. |
Wan Y C, Wang Y J, Luo G S. Preparation of fibrous γ-alumina with large pore volume via co-current dropwise addition method[J]. CIESC Journal, 2018, 69(11): 4840-4847. | |
9 | 熊晓云, 曹庚振, 杜学敏, 等. 炭黑模板法制备大孔原位晶化型催化裂化催化剂[J]. 无机盐工业, 2023, 55(9): 134-139. |
Xiong X Y, Cao G Z, Du X M, et al. Preparation of macroporous in situ crystallized FCC catalyst by carbon black template method[J]. Inorganic Chemicals Industry, 2023, 55(9): 134-139. | |
10 | 魏娟, 王玉军, 骆广生. 铝源孔容和焙烧升温过程对碳热还原法制备氮化铝粉体的影响[J]. 化工学报, 2021, 72(2): 1156-1168. |
Wei J, Wang Y J, Luo G S. Influence of pore volume and heating process on preparation of aluminum nitride powder by carbothermal reduction method[J]. CIESC Journal, 2021, 72(2): 1156-1168. | |
11 | 熊晓云, 潘志爽, 胡清勋, 等. 高岭土酸碱复合改性制备多孔材料及其应用[J]. 石油炼制与化工, 2023, 54(7): 46-51. |
Xiong X Y, Pan Z S, Hu Q X, et al. Preparation and application of porous materials by combining base and acid modification of kaolin[J]. Petroleum Processing and Petrochemicals, 2023, 54(7): 46-51. | |
12 | Bondarenko A V, Bondarenko V V, Petukhova, G A, et al. Adsorption properties of kaolinite and montmorillonite activated by thermochemical treatment[J]. Protection of Metals and Physical Chemistry of Surfaces, 2023, 59(5): 828-836. |
13 | 张莉, 刘超伟, 胡清勋, 等. 高岭土族矿物原位晶化合成Y型分子筛催化剂的研究进展[J]. 工业催化, 2020, 28(11): 1-8. |
Zhang L, Liu C W, Hu Q X, et al. Research progress on in situ crystallization of zeolite catalyst from kaolin group minerals for RFCC[J]. Industrial Catalysis, 2020, 28(11): 1-8. | |
14 | 黄校亮, 姚文君, 郑云锋, 等. 改性高岭土在催化裂化催化剂中的应用研究[J]. 炼油与化工, 2011, 22(6): 25-27, 63. |
Huang X L, Yao W J, Zheng Y F, et al. Modification of kaolin and its application in FCC catalyst[J]. Refining and Chemical Industry, 2011, 22(6): 25-27, 63. | |
15 | Baker B R, Pearson R M. Water content of pseudoboehmite: a new model for its structure[J]. Journal of Catalysis, 1974, 33(2): 265-278. |
16 | 闫涛, 袁程远, 柴军军, 等. 硅改性拟薄水铝石的合成及其在FCC催化剂中的应用[J]. 石油化工, 2021, 50(11): 1115-1120. |
Yan T, Yuan C Y, Chai J J, et al. Synthesis of silica-modified pseudo boehmite and its application in FCC catalyst[J]. Petrochemical Technology, 2021, 50(11): 1115-1120. | |
17 | 郑金玉, 欧阳颖, 罗一斌, 等. 无序介孔硅铝材料的合成、表征及性能研究[J]. 石油炼制与化工, 2015, 46(9): 47-51. |
Zheng J Y, Ouyang Y, Luo Y B, et al. Synthesis, characterization and catalytic cracking performance of disordered mesoporous silica-alumina material[J]. Petroleum Processing and Petrochemicals, 2015, 46(9): 47-51. | |
18 | 熊晓云, 高雄厚, 胡清勋, 等. 富B酸多级孔材料在催化裂化催化剂中的应用[J]. 精细石油化工, 2019, 36(3): 24-27. |
Xiong X Y, Gao X H, Hu Q X, et al. Application of hierarchical porous material rich in bronsted acid in FCC catalyst[J]. Speciality Petrochemicals, 2019, 36(3): 24-27. | |
19 | Kärger J, Freude D, Haase J. Diffusion in nanoporous materials: novel insights by combining MAS and PFG NMR[J]. Processes, 2018, 6(9): 147. |
20 | Hernandez-Tamargo C, Silverwood I P, O'Malley A J, et al. Quasielastic neutron scattering and molecular dynamics simulation study on the molecular behaviour of catechol in zeolite beta[J]. Topics in Catalysis, 2021, 64(9): 707-721. |
21 | Talmon Y, Shtirberg L, Harneit W, et al. Molecular diffusion in porous media by PGSE ESR[J]. Physical Chemistry Chemical Physics, 2010, 12(23): 5998-6007. |
22 | Wessig M, Spitzbarth M, Drescher M, et al. Multiple scale investigation of molecular diffusion inside functionalized porous hosts using a combination of magnetic resonance methods[J]. Physical Chemistry Chemical Physics, 2015, 17(24): 15976-15988. |
23 | Ajith V J, Patil S. Translational diffusion of a fluorescent tracer molecule in nanoconfined water[J]. Langmuir, 2022, 38(3): 1034-1044. |
24 | Beschieru V, Rathke B, Will S. Particle diffusion in porous media investigated by dynamic light scattering[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 63-69. |
25 | 秦玉才, 高雄厚, 石利飞, 等. 原位晶化FCC催化剂传质性能的频率响应法辨析[J]. 物理化学学报, 2016, 32(2): 527-535. |
Qin Y C, Gao X H, Shi L F, et al. Discrimination of the mass transfer performance of in situ crystallization FCC catalysts by the frequency response method[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 527-535. | |
26 | Yasuda Y. Determination of vapor diffusion coefficients in zeolite by the frequency response method[J]. The Journal of Physical Chemistry, 1982, 86(10): 1913-1917. |
27 | Mehlhorn D, Inayat A, Schwieger W, et al. Probing mass transfer in mesoporous faujasite-type zeolite nanosheet assemblies[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2014, 15(8): 1681-1686. |
28 | Vattipalli V, Qi X D, Dauenhauer P J, et al. Long walks in hierarchical porous materials due to combined surface and configurational diffusion[J]. Chemistry of Materials, 2016, 28(21): 7852-7863. |
29 | Xiao Y, Xu W L. Single-molecule fluorescence imaging for probing nanocatalytic process[J]. Chem, 2023, 9(1): 16-28. |
30 | González R M, Maris J J E, Wagner M, et al. Fluorescent-probe characterization for pore-space mapping with single-particle tracking[J]. Angewandte Chemie International Edition, 2024, 63(4): e202314528. |
31 | Lezcano-González I, Oord R, Rovezzi M, et al. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-ray methods[J]. Angewandte Chemie International Edition, 2016, 55(17): 5215-5219. |
32 | Werny M J, Siebers K B, Friederichs N H, et al. Advancing the compositional analysis of olefin polymerization catalysts with high-throughput fluorescence microscopy[J]. Journal of the American Chemical Society, 2022, 144(46): 21287-21294. |
33 | Omori N, Candeo A, Mosca S, et al. Multimodal imaging of autofluorescent sites reveals varied chemical speciation in SSZ-13 crystals[J]. Angewandte Chemie International Edition, 2021, 60(10): 5125-5131. |
34 | Lee H, Kim K, Kang C M, et al. In situ confocal fluorescence lifetime imaging of nanopore electrode arrays with redox active fluorogenic amplex red[J]. Analytical Chemistry, 2023, 95(2): 1038-1046. |
35 | Buurmans I L C, Ruiz-Martínez J, Knowles W V, et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining[J]. Nature Chemistry, 2011, 3(11): 862-867. |
36 | Kox M H, Mijovilovich A, Sättler J J, et al. The catalytic conversion of thiophenes over large H-ZSM-5 crystals: an X-ray, UV/vis, and fluorescence microspectroscopic study[J]. ChemCatChem, 2010, 2(5): 564-571. |
37 | Hendriks F C, Meirer F, Kubarev A V, et al. Single-molecule fluorescence microscopy reveals local diffusion coefficients in the pore network of an individual catalyst particle[J]. Journal of the American Chemical Society, 2017, 139(39): 13632-13635. |
38 | 刘现玉, 袁程远, 高雄厚, 等. 拟薄水铝石@高岭土复合材料的合成及其在FCC催化剂中的应用[J]. 石油化工, 2020, 49(3): 219-223. |
Liu X Y, Yuan C Y, Gao X H, et al. Synthesis of pseudo-boehmite@kaolinite composite and its application in FCC catalyst[J]. Petrochemical Technology, 2020, 49(3): 219-223. | |
39 | Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
[1] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[2] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
[3] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[4] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[5] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[6] | Ting CHENG, Weizhou JIAO, Youzhi LIU. Application and research progress of functional packings in high-gravity rotating packed bed [J]. CIESC Journal, 2024, 75(4): 1414-1428. |
[7] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[8] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[9] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[10] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[11] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[12] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[13] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[14] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[15] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||