CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4666-4678.DOI: 10.11949/0438-1157.20240580
• Process system engineering • Previous Articles Next Articles
Siqi LIU1(), Zhikang YI1, Yuan XIAO1, Huanhuan DUAN1,2, Guomin CUI1(
)
Received:
2024-05-29
Revised:
2024-06-23
Online:
2025-01-03
Published:
2024-12-25
Contact:
Guomin CUI
刘思琪1(), 易智康1, 肖媛1, 段欢欢1,2, 崔国民1(
)
通讯作者:
崔国民
作者简介:
刘思琪(1996—),女,博士研究生,297277707@qq.com
基金资助:
CLC Number:
Siqi LIU, Zhikang YI, Yuan XIAO, Huanhuan DUAN, Guomin CUI. Simultaneous optimization of combined heat and mass exchange network synthesis considering lean stream bypass[J]. CIESC Journal, 2024, 75(12): 4666-4678.
刘思琪, 易智康, 肖媛, 段欢欢, 崔国民. 考虑贫流股旁路的热-质交换网络同步优化[J]. 化工学报, 2024, 75(12): 4666-4678.
参数 | 数值 |
---|---|
运行时长/(h/a) | 8600 |
塔板单价/(USD/(stage·a)) | 4552 |
塔板效率/% | 20 |
换热器费用/(USD/a) | 30000+750A0.81 |
年化因子 | 0.2 |
S2/(USD/kg) | 0.001 |
热公用工程费用/(USD·kW/a) | 120 |
冷公用工程费用/(USD·kW/a) | 30 |
Table 1 Cost data of example 1
参数 | 数值 |
---|---|
运行时长/(h/a) | 8600 |
塔板单价/(USD/(stage·a)) | 4552 |
塔板效率/% | 20 |
换热器费用/(USD/a) | 30000+750A0.81 |
年化因子 | 0.2 |
S2/(USD/kg) | 0.001 |
热公用工程费用/(USD·kW/a) | 120 |
冷公用工程费用/(USD·kW/a) | 30 |
R i | Gi /(kg/s) | yiin | yiout | Sj | Ljup/(kg/s) | xjin | xjout |
---|---|---|---|---|---|---|---|
R1 | 104 | 8.83×10-4 | 5.00×10-6 | S1 | 40 | 0.07557 | ≤0.115 |
R2 | 442 | 7.00×10-4 | 5.00×10-6 | S2 | ∞ | 0.00100 | ≤0.010 |
Table 2 Date of the rich/lean streams of example 1
R i | Gi /(kg/s) | yiin | yiout | Sj | Ljup/(kg/s) | xjin | xjout |
---|---|---|---|---|---|---|---|
R1 | 104 | 8.83×10-4 | 5.00×10-6 | S1 | 40 | 0.07557 | ≤0.115 |
R2 | 442 | 7.00×10-4 | 5.00×10-6 | S2 | ∞ | 0.00100 | ≤0.010 |
流股 | Tin/K | Tout/K | Tlo/K | Tup/K | cp /(kJ/(kg·K)) |
---|---|---|---|---|---|
R1 | 298 | 298 | 288 | 313 | 1.00 |
R2 | 298 | 298 | 288 | 313 | 1.00 |
S1 | 348 | 368 | 279 | 368 | 2.50 |
S2 | 310 | — | 280 | 330 | 2.40 |
HU | 453 | 452 | — | — | — |
CU | 278 | 283 | — | — | — |
Table 3 Thermal data of the rich/lean streams of example 1
流股 | Tin/K | Tout/K | Tlo/K | Tup/K | cp /(kJ/(kg·K)) |
---|---|---|---|---|---|
R1 | 298 | 298 | 288 | 313 | 1.00 |
R2 | 298 | 298 | 288 | 313 | 1.00 |
S1 | 348 | 368 | 279 | 368 | 2.50 |
S2 | 310 | — | 280 | 330 | 2.40 |
HU | 453 | 452 | — | — | — |
CU | 278 | 283 | — | — | — |
流股 | FCP/(kW/K) | Tin/K | Tout/K | H/(kW·m2/K) |
---|---|---|---|---|
H1 | 10.0 | 448 | 318 | 0.2 |
H2 | 40.0 | 398 | 338 | 0.2 |
C1 | 20.0 | 293 | 428 | 0.2 |
C2 | 15.0 | 313 | 385 | 0.2 |
Table 4 Data of the hot/cold streams of example 1
流股 | FCP/(kW/K) | Tin/K | Tout/K | H/(kW·m2/K) |
---|---|---|---|---|
H1 | 10.0 | 448 | 318 | 0.2 |
H2 | 40.0 | 398 | 338 | 0.2 |
C1 | 20.0 | 293 | 428 | 0.2 |
C2 | 15.0 | 313 | 385 | 0.2 |
1 | Gatto A. Quantifying management efficiency of energy recovery from waste for the circular economy transition in Europe[J]. Journal of Cleaner Production, 2023, 414: 136948. |
2 | Inayat A. Current progress of process integration for waste heat recovery in steel and iron industries[J]. Fuel, 2023, 338: 127237. |
3 | Agustina D. The influencing factors in cleaner production adoption on the aluminium processing industry[J]. Journal of Engineering and Management in Industrial System, 2023, 11(1): 14-25. |
4 | Isafiade A J, Short M. Review of mass exchanger network synthesis methodologies[J]. Chemical Engineering Transactions, 2019, 76: 49-54. |
5 | Short M, Isafiade A J. Thirty years of mass exchanger network synthesis—a systematic review[J]. Journal of Cleaner Production, 2021, 304: 127112. |
6 | Isafiade A, Fraser D. Optimization of combined heat and mass exchanger networks using pinch technology[J]. Asia-Pacific Journal of Chemical Engineering, 2007, 2(6): 554-565. |
7 | Bagajewicz M J, Manousiouthakis V. Mass/heat-exchange network representation of distillation networks[J]. AIChE Journal, 1992, 38(11): 1769-1800. |
8 | Bagajewicz M J, Pham R, Manousiouthakis V. On the state space approach to mass/heat exchanger network design[J]. Chemical Engineering Science, 1998, 53(14): 2595-2621. |
9 | Liu L L, Du J, El-Halwagi M M, et al. A simultaneous synthesis method for combined heat and mass exchange networks[C]//Proceedings of the 11th International Symposium on Process Systems Engineering. Singapore, 2012: 185-189. |
10 | Liu L L, Du J, El-Halwagi M M, et al. A systematic approach for synthesizing combined mass and heat exchange networks[J]. Computers & Chemical Engineering, 2013, 53: 1-13. |
11 | 陈子禾, 崔国民, 徐玥, 等. 基于控制参数动态协调策略的换热网络优化研究[J]. 工程热物理学报, 2020, 41(4): 957-965. |
Chen Z H, Cui G M, Xu Y, et al. Study of heat exchanger network optimization based on dynamic coordination strategy of control parameters[J]. Journal of Engineering Thermophysics, 2020, 41(4): 957-965. | |
12 | 薛东峰, 陈理, 袁一, 等. 质量交换网络综合[J]. 现代化工, 2001, 21(6): 16-19, 21. |
Xue D F, Chen L, Yuan Y, et al. Synthesis of mass exchange network[J]. Modern Chemical Industry, 2001, 21(6): 16-19, 21. | |
13 | Dong H G, Lin C Y, Chang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks[J]. Chemical Engineering Science, 2008, 63(14): 3664-3678. |
14 | Kamat S, Bandyopadhyay S. Optimization of regeneration temperature for energy integrated water allocation networks[J]. Cleaner Engineering and Technology, 2022, 8: 100490. |
15 | 彭肖祎, 董轩, 廖祖维, 等. 数学规划与图形方法相结合设计热集成用水网络[J]. 化工学报, 2021, 72(2): 1047-1058. |
Peng X Y, Dong X, Liao Z W, et al. Optimal design of heat integrated water allocation networks combining mathematical programming with graphical tools[J]. CIESC Journal, 2021, 72(2): 1047-1058. | |
16 | Boix M, Pibouleau L, Montastruc L, et al. Minimizing water and energy consumptions in water and heat exchange networks[J]. Applied Thermal Engineering, 2012, 36: 442-455. |
17 | Kim J, Kim J, Kim J, et al. A simultaneous optimization approach for the design of wastewater and heat exchange networks based on cost estimation[J]. Journal of Cleaner Production, 2009, 17(2): 162-171. |
18 | Drobež R, Pintarič Z N, Pahor B, et al. Simultaneous synthesis of a biogas process and heat exchanger network[J]. Applied Thermal Engineering, 2012, 43: 91-100. |
19 | Isafiade A J, Fraser D M. Interval based MINLP superstructure synthesis of combined heat and mass exchanger networks[J]. Chemical Engineering Research and Design, 2009, 87(11): 1536-1542. |
20 | Ghazouani S, Zoughaib A, Le Bourdiec S. An MILP model for simultaneous mass allocation and heat exchange networks design[J]. Chemical Engineering Science, 2017, 158: 411-428. |
21 | Dong X, Zhang C J, Peng X Y, et al. Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers[J]. Energy, 2022, 238: 121916. |
22 | 刘薇薇, 崔国民, 张璐, 等. 一种应用于换热网络综合的阻尼优化方法[J]. 化工学报, 2022, 73(5): 2060-2072. |
Liu W W, Cui G M, Zhang L, et al. Damping optimization method for heat exchange network synthesis[J]. CIESC Journal, 2022, 73(5): 2060-2072. | |
23 | Srinivas B K, El-Halwagi M M. Synthesis of combined heat and reactive mass-exchange networks[J]. Chemical Engineering Science, 1994, 49(13): 2059-2074. |
24 | 刘琳琳. 多组分体系质量-热量联合交换网络综合研究[D]. 大连: 大连理工大学, 2013. |
Liu L L. Study on combined mass and heat exchange networks synthesis for multi-component systems[D]. Dalian: Dalian University of Technology, 2013. | |
25 | 孙琳, 赵野, 罗雄麟. 基于夹点技术与超结构模型的多程换热网络最优综合[J]. 化工学报, 2014, 65(3): 967-975. |
Sun L, Zhao Y, Luo X L. Synthesis of multi-pass heat exchanger network based on pinch technology and superstructure model[J]. CIESC Journal, 2014, 65(3): 967-975. | |
26 | Liu L L, Du J, Yang F L. Combined mass and heat exchange network synthesis based on stage-wise superstructure model[J]. Chinese Journal of Chemical Engineering, 2015, 23(9): 1502-1508. |
27 | Zhou Z Q, Cui G M, Xiao Y. A novel node-based non-structural model for mass exchanger network synthesis using a stochastic algorithm[J]. Journal of Cleaner Production, 2022, 376: 134227. |
28 | Shenoy U V. Heat Exchanger Network Synthesis: Process Optimization by Energy and Resource Analysis[M]. Houston: Gulf Pub., 1995. |
[1] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[2] | Yan LI, Lijun ZHENG, Enyong ZHANG, Yunfei WANG. Model and experimental study of fluid permeation characteristics in a deep-water oil and gas tube [J]. CIESC Journal, 2024, 75(S1): 118-125. |
[3] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
[4] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
[5] | Ji LI, Jianlin WANG, Rui HE, Xinjie ZHOU, Wen WANG, Liqiang ZHAO. DBSVDD-RVR based online soft sensing for quality variables in multimode batch processes [J]. CIESC Journal, 2024, 75(9): 3231-3241. |
[6] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[7] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[8] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[9] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[10] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[11] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[12] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[13] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[14] | Yongqi TONG, Jie CHENG, Hai LIN, Xi CHEN, Haibo ZHAO. CPFD simulation of a 10 MWth chemical looping combustion reactor [J]. CIESC Journal, 2024, 75(8): 2949-2959. |
[15] | Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams [J]. CIESC Journal, 2024, 75(7): 2604-2612. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||