CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3458-3464.DOI: 10.11949/0438-1157.20190279
• Process system engineering • Previous Articles Next Articles
Meihua QIN(),Hongqiu ZHU(),Yonggang LI,Junming CHEN,Fengxue ZHANG,Wenting LI
Received:
2019-03-22
Revised:
2019-06-09
Online:
2019-09-05
Published:
2019-09-05
Contact:
Hongqiu ZHU
通讯作者:
朱红求
作者简介:
秦美华(1994—),女,硕士研究生,基金资助:
CLC Number:
Meihua QIN, Hongqiu ZHU, Yonggang LI, Junming CHEN, Fengxue ZHANG, Wenting LI. Soft-sensor method for ion concentration of electrochemical wastewater treatment based on STA-K-means clustering[J]. CIESC Journal, 2019, 70(9): 3458-3464.
秦美华, 朱红求, 李勇刚, 陈俊名, 张凤雪, 李文婷. 基于STA-K均值聚类的电化学废水处理过程离子浓度软测量[J]. 化工学报, 2019, 70(9): 3458-3464.
Add to citation manager EndNote|Ris|BibTeX
算法 | 数据集 | 均值 | 方差 | 最优解 |
---|---|---|---|---|
K均值 | Iris | 85.0108 | 354.9195 | 78.9408 |
Wine | 2.4714×106 | 1.6264×1010 | 2.3707×106 | |
CMC | 2.3698×104 | 50.0719 | 2.3690×104 | |
Balance | 3.4920×103 | 627.7348 | 3.4723×103 | |
PSO-K均值 | Iris | 81.0750 | 131.6311 | 78.9408 |
Wine | 2.3758×106 | 1.2698×109 | 2.3707×106 | |
CMC | 2.3698×104 | 32.7557 | 2.3690×104 | |
Balance | 3.4772×103 | 27.6025 | 3.4723×103 | |
本文算法 | Iris | 78.9763 | 4.6151×10-6 | 78.9521 |
Wine | 2.0401×106 | 2.1555×104 | 2.0400×106 | |
CMC | 2.3625×104 | 0.7478 | 2.3624×104 | |
Balance | 3.4733×103 | 6.9692 | 3.4723×103 |
Table 1 Clustering results of three algorithms on UCI data sets
算法 | 数据集 | 均值 | 方差 | 最优解 |
---|---|---|---|---|
K均值 | Iris | 85.0108 | 354.9195 | 78.9408 |
Wine | 2.4714×106 | 1.6264×1010 | 2.3707×106 | |
CMC | 2.3698×104 | 50.0719 | 2.3690×104 | |
Balance | 3.4920×103 | 627.7348 | 3.4723×103 | |
PSO-K均值 | Iris | 81.0750 | 131.6311 | 78.9408 |
Wine | 2.3758×106 | 1.2698×109 | 2.3707×106 | |
CMC | 2.3698×104 | 32.7557 | 2.3690×104 | |
Balance | 3.4772×103 | 27.6025 | 3.4723×103 | |
本文算法 | Iris | 78.9763 | 4.6151×10-6 | 78.9521 |
Wine | 2.0401×106 | 2.1555×104 | 2.0400×106 | |
CMC | 2.3625×104 | 0.7478 | 2.3624×104 | |
Balance | 3.4733×103 | 6.9692 | 3.4723×103 |
方法 | 工况 | q max/ (mg/g) | K L/ (L/mg) | k 1 | k 2 | k 3 |
---|---|---|---|---|---|---|
模型1 | 70.91 | 0.0951 | 5.9853×106 | 1.04 | 1.73 | |
模型2 | 1 | 73.51 | 0.0923 | 5.1347×106 | 0.88 | 1.70 |
2 | 70.32 | 0.1033 | 7.0325×106 | 1.02 | 1.75 | |
3 | 68.89 | 0.0960 | 2.9871×106 | 1.04 | 1.63 | |
4 | 69.67 | 0.0976 | 6.4153×106 | 0.86 | 1.72 | |
5 | 70.52 | 0.0944 | 5.5360×106 | 0.91 | 1.67 | |
模型3 | 1 | 72.96 | 0.0962 | 4.1526×106 | 0.98 | 1.66 |
2 | 71.87 | 0.0965 | 5.7729×106 | 0.95 | 1.68 | |
3 | 70.41 | 0.0974 | 7.2144×106 | 0.87 | 1.73 | |
4 | 71.64 | 0.1036 | 6.9386×106 | 1.05 | 1.75 | |
5 | 69.33 | 0.1012 | 6.1376×106 | 0.83 | 1.71 | |
模型4 | 1 | 72.62 | 0.0928 | 6.8358×106 | 1.01 | 1.73 |
2 | 69.48 | 0.0989 | 5.9037×106 | 0.94 | 1.69 | |
3 | 70.59 | 0.0958 | 5.1075×106 | 0.93 | 1.72 | |
4 | 71.03 | 0.1008 | 4.3165×106 | 0.98 | 1.67 | |
5 | 69.75 | 0.0937 | 7.1049×106 | 1.02 | 1.75 |
Table 2 Model parameter identification results of different methods
方法 | 工况 | q max/ (mg/g) | K L/ (L/mg) | k 1 | k 2 | k 3 |
---|---|---|---|---|---|---|
模型1 | 70.91 | 0.0951 | 5.9853×106 | 1.04 | 1.73 | |
模型2 | 1 | 73.51 | 0.0923 | 5.1347×106 | 0.88 | 1.70 |
2 | 70.32 | 0.1033 | 7.0325×106 | 1.02 | 1.75 | |
3 | 68.89 | 0.0960 | 2.9871×106 | 1.04 | 1.63 | |
4 | 69.67 | 0.0976 | 6.4153×106 | 0.86 | 1.72 | |
5 | 70.52 | 0.0944 | 5.5360×106 | 0.91 | 1.67 | |
模型3 | 1 | 72.96 | 0.0962 | 4.1526×106 | 0.98 | 1.66 |
2 | 71.87 | 0.0965 | 5.7729×106 | 0.95 | 1.68 | |
3 | 70.41 | 0.0974 | 7.2144×106 | 0.87 | 1.73 | |
4 | 71.64 | 0.1036 | 6.9386×106 | 1.05 | 1.75 | |
5 | 69.33 | 0.1012 | 6.1376×106 | 0.83 | 1.71 | |
模型4 | 1 | 72.62 | 0.0928 | 6.8358×106 | 1.01 | 1.73 |
2 | 69.48 | 0.0989 | 5.9037×106 | 0.94 | 1.69 | |
3 | 70.59 | 0.0958 | 5.1075×106 | 0.93 | 1.72 | |
4 | 71.03 | 0.1008 | 4.3165×106 | 0.98 | 1.67 | |
5 | 69.75 | 0.0937 | 7.1049×106 | 1.02 | 1.75 |
方法 | MRE | RMSE | MAXE/% |
---|---|---|---|
单一模型 | 0.1009 | 0.0047 | 29.0719 |
K均值-多模型 | 0.0848 | 0.0038 | 17.4880 |
PSO-K均值-多模型 | 0.0779 | 0.0037 | 17.3490 |
本文方法 | 0. 0561 | 0. 0027 | 13.9315 |
Table 3 Comparison of prediction results of different methods
方法 | MRE | RMSE | MAXE/% |
---|---|---|---|
单一模型 | 0.1009 | 0.0047 | 29.0719 |
K均值-多模型 | 0.0848 | 0.0038 | 17.4880 |
PSO-K均值-多模型 | 0.0779 | 0.0037 | 17.3490 |
本文方法 | 0. 0561 | 0. 0027 | 13.9315 |
1 | Kabdaşlı I , Arslan-Alaton I , Ölmez-Hancı T , et al . Electrocoagulation applications for industrial wastewaters: a critical review[J]. Environmental Technology Reviews, 2012, 1(1): 2-45. |
2 | Moussa D T , El-Naas M H , Nasser M , et al . A comprehensive review of electrocoagulation for water treatment: potentials and challenges [J]. Journal of Environmental Management, 2017, 186(Pt 1): 24-41. |
3 | Al-Shannag M , Al-Qodah Z , Bani-Melhem K , et al . Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance[J]. Chemical Engineering Journal, 2015, 260: 749-756. |
4 | 曾毅夫, 刘君, 邱敬贤, 等 .电化学法处理含重金属电镀废水研究[J]. 再生资源与循环经济, 2018, 11(6): 42-44. |
Zeng Y F , Liu J , Qiu J X , et al . Electrochemical treatment of electroplating wastewater containing heavy metals [J]. Renewable Resources and Recycling Economy, 2018, 11(6): 42-44. | |
5 | 曹鹏飞, 罗雄麟 .化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800. |
Cao P F , Luo X L . Research progress of soft sensing modeling method for chemical process [J]. CIESC Journal, 2013, 64(3): 788-800. | |
6 | Balasubramanian N , Kojima T , Srinivasakannan C . Arsenic removal through electrocoagulation: kinetic and statistical modeling [J]. Chemical Engineering Journal, 2009, 155(1/2): 76-82. |
7 | Vasudevan S , Lakshmi J , Sozhan G . Studies on the Al-Zn-In-alloy as anode material for the removal of chromium from drinking water in electrocoagulation process [J]. Desalination, 2011, 275(1/2/3): 260-268. |
8 | Hu C Y , Lo S L , Kuan W H . Simulation the kinetics of fluoride removal by electrocoagulation (EC) process using aluminum electrodes[J]. Journal of Hazardous Materials, 2007, 145(1): 180-185. |
9 | Hakizimana J N , Gourich B , Chafi M , et al . Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches [J]. Desalination, 2017, 404: 1-21. |
10 | Sasson M B , Calmano W , Adin A . Iron-oxidation processes in an electroflocculation (electrocoagulation) cell [J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 704-709. |
11 | 赵斐, 陆宁云, 杨毅 . 基于工况识别的注塑过程产品质量预测方法[J]. 化工学报, 2013, 64(7): 2526-2534. |
Zhao F , Lu N Y , Yang Y . Product quality prediction method for injection molding process based on condition identification [J]. CIESC Journal, 2013, 64(7): 2526-2534. | |
12 | 陈定三, 杨慧中 . 用于多模型软测量的扩张搜索聚类算法[J]. 计算机与应用化学, 2011, 28(4): 407-410. |
Chen D S , Yang H Z . Extended search clustering algorithm for multi-model soft sensing [J]. Computer & Applied Chemistry, 2011, 28(4): 407-410. | |
13 | 丛秋梅, 张北伟, 苑明哲 . 基于同步聚类的污水水质混合在线软测量方法[J]. 计算机工程与应用, 2015, 51(24): 27-33+66. |
Cong Q M , Zhang B W , Yuan M Z . Online soft measurement method for mixed wastewater quality based on synchronous clustering [J]. Computer Engineering and Application, 2015, 51(24): 27-33+66. | |
14 | 余伟, 罗飞, 杨红, 等 . 基于多神经网络的污水氨氮预测模型[J]. 华南理工大学学报(自然科学版), 2010, 38(12): 79-83. |
Yu W , Luo F , Yang H , et al . Prediction model of ammonia nitrogen in sewage based on multi-neural network [J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(12): 79-83. | |
15 | 钟伟民, 李杰, 程辉, 等 . 基于FCM聚类的气化炉温度多模型软测量建模[J]. 化工学报, 2012, 63(12): 3951-3955. |
Zhong W M , Li J , Cheng H , et al . Multi-model soft-sensing modeling of gasifier temperature based on FCM clustering [J]. CIESC Journal, 2012, 63(12): 3951-3955. | |
16 | Dhanachandra N , Manglem K , Chanu Y J . Image segmentation using K-means clustering algorithm and subtractive clustering algorithm[J]. Procedia Computer Science, 2015, 54: 764-771. |
17 | Gonzalez T F . Clustering to minimize the maximum intercluster distance [J]. Theoretical Computer Science, 1985, 38: 293-306. |
18 | Redmond S J , Heneghan C . A method for initialising the K-means clustering algorithm using kd-trees [J]. Pattern Recognition Letters, 2007, 28(8): 965-973. |
19 | Kapil S , Chawla M , Ansari M D . On K-means data clustering algorithm with genetic algorithm[C]//2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE, 2016: 202-206. |
20 | Yu Q , Luo Y , Chen C , et al . Outlier-eliminated K-means clustering algorithm based on differential privacy preservation[J]. Applied Intelligence, 2016, 45(4): 1179-1191. |
21 | Deb A B , Dey L . Outlier detection and removal algorithm in K-means and hierarchical clustering[J]. World Journal of Computer Application and Technology, 2017, 5(2): 24-29. |
22 | Stumm W , Lee G F . Oxygenation of ferrous iron [J]. Industrial & Engineering Chemistry, 1961, 53(2): 143-146. |
23 | Jimenez C , Saez C , Martinez F , et al . Electrochemical dosing of iron and aluminum in continuous processes: a key step to explain electro-coagulation processes [J]. Separation & Purification Technology, 2012, 98(98): 102-108. |
24 | Lakshmanan D , Clifford D A , Samanta G . Ferrous and ferric ion generation during iron electrocoagulation [J]. Environmental Science & Technology, 2009, 43(10): 3853. |
25 | Sujana M G , Thakur R S , Rao S B . Removal of fluoride from aqueous solution by using alum sludge[J]. Journal of Colloid and Interface Science, 1998, 206(1): 94-101. |
26 | Zhou X , Yang C , Gui W . State transition algorithm [J]. Journal of Industrial and Management Optimization, 2012, 8(4): 1039-1056. |
27 | Gan G , Ng K P . k-means clustering with outlier removal[J]. Pattern Recognition Letters, 2017, 90: 8-14. |
28 | Ahmed M . A novel approach for outlier detection and clustering improvement[C]// Industrial Electronics & Applications. IEEE, 2013. |
29 | Zhou X , Gao D Y , Yang C . A comparative study of state transition algorithm with harmony search and artificial bee colony[C]//Proceedings of the Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2013. Berlin, Heidelberg: Springer, 2013: 651-659. |
30 | 刘靖明, 韩丽川, 侯立文 . 基于粒子群的K均值聚类算法[J]. 系统工程理论与实践, 2005, (6): 54-58. |
Liu J M , Han L C , Hou L W . K-means clustering algorithm based on particle swarm optimization [J]. Systems Engineering Theory and Practice, 2005, (6): 54-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||