CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1868-1878.DOI: 10.11949/j.issn.0438-1157.20181530
• Process system engineering • Previous Articles Next Articles
Fei LI1,2(),Cuili YANG1,2,Wenjing LI1,2,Junfei QIAO1,2()
Received:
2019-01-02
Revised:
2019-02-19
Online:
2019-05-05
Published:
2019-05-05
Contact:
Junfei QIAO
李霏1,2(),杨翠丽1,2,李文静1,2,乔俊飞1,2()
通讯作者:
乔俊飞
作者简介:
<named-content content-type="corresp-name">李霏</named-content>(1985—),女,博士研究生,<email>lifeiaedu@hotmail.com</email>|乔俊飞(1968—),男,博士,教授,<email>junfeiq@bjut.edu.cn</email>
基金资助:
CLC Number:
Fei LI, Cuili YANG, Wenjing LI, Junfei QIAO. Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution[J]. CIESC Journal, 2019, 70(5): 1868-1878.
李霏, 杨翠丽, 李文静, 乔俊飞. 基于均匀分布NSGAII算法的污水处理多目标优化控制[J]. 化工学报, 2019, 70(5): 1868-1878.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181530
优化控制策略 | S O,5/(mg/L) | S NO,2/(mg/L) | SS/(mg/L) | S NH/(mg/L) | BOD5/(mg/L) | COD5/(mg/L) | EC/(kW?h) | EQ/(kg pollution unit) |
---|---|---|---|---|---|---|---|---|
influent[ | 7.58 | 0.23 | 198.57 | 30.14 | 183.49 | 167.31 | — | — |
UDNSGAII-PID | 1.6385 | 1.0123 | 11.8659 | 2.3896 | 2.7269 | 45.0298 | 3239.65 | 7231.72 |
MOPSO-PID[ | 1.6947 | 1.1329 | 12.6108 | 2.8156 | 2.6816 | 47.5183 | 3256.16 | 7394.9 |
PID[ | 2 | 1 | 11.2149 | 10.2328 | 2.5683 | 45.2938 | 3763.70 | 7115.98 |
ADPOC[ | 1.5799 | 1.087 | — | 2.7230 | 3.1103 | 44.8962 | 3676.28 | 7409.84 |
NNOMC[ | 1.8 | 1.4 | 12.72 | 3.41 | 2.71 | 47.68 | 3782.44 | 6334.90 |
RO-NMPC[ | 1.01 | 0.94 | — | 2.23 | — | — | 3232.99 | 8102.09 |
Table 1 Energy consumption and effluent constraints comparison of different optimal control methods
优化控制策略 | S O,5/(mg/L) | S NO,2/(mg/L) | SS/(mg/L) | S NH/(mg/L) | BOD5/(mg/L) | COD5/(mg/L) | EC/(kW?h) | EQ/(kg pollution unit) |
---|---|---|---|---|---|---|---|---|
influent[ | 7.58 | 0.23 | 198.57 | 30.14 | 183.49 | 167.31 | — | — |
UDNSGAII-PID | 1.6385 | 1.0123 | 11.8659 | 2.3896 | 2.7269 | 45.0298 | 3239.65 | 7231.72 |
MOPSO-PID[ | 1.6947 | 1.1329 | 12.6108 | 2.8156 | 2.6816 | 47.5183 | 3256.16 | 7394.9 |
PID[ | 2 | 1 | 11.2149 | 10.2328 | 2.5683 | 45.2938 | 3763.70 | 7115.98 |
ADPOC[ | 1.5799 | 1.087 | — | 2.7230 | 3.1103 | 44.8962 | 3676.28 | 7409.84 |
NNOMC[ | 1.8 | 1.4 | 12.72 | 3.41 | 2.71 | 47.68 | 3782.44 | 6334.90 |
RO-NMPC[ | 1.01 | 0.94 | — | 2.23 | — | — | 3232.99 | 8102.09 |
1 | Petrie B , Barden R , Kasprzyk-Hordern B . A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72(1): 3-27. |
2 | Bayram A , Kankal M , Tayfur G , et al . Prediction of suspended sediment concentration from water quality variables[J]. Neural Computing and Appl., 2014, 24(5): 1079- 1087. |
3 | Prasse C , Stalter D , Schulte-Oehlmann U , et al . Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies[J]. Water Research, 2015, 87(15): 237-270. |
4 | Guerrero J , Guisasola A , Comas J , et al . Multi-criteria selection of optimum WWTP control setpoints based on microbiology- related failures, effluent quality and operating costs[J]. Chemical Engineering Journal, 2012, 188(15): 23-29. |
5 | Han H G , Qiao J F . Nonlinear model-predictive control for industrial processes: an application to wastewater treatment process[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1970-1982. |
6 | Hameed M , Sharqi S S , Yaseen Z M , et al . Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia[J]. Neural Computing and Appl., 2017, 28(1): 893- 905. |
7 | Han G , Qiao J F , Han H G , et al . Optimal control for wastewater treatment process based on Hopfield neural network[J]. Control and Decision, 2014, 71(11): 1661-1671. |
8 | Hakanen J , Miettinen K , Sahlstedt K . Wastewater treatment: new insight provided by interactive multiobjective optimization[J]. Decision Support Systems, 2011, 51(2): 328- 337. |
9 | Han H G , Zhang L , Hou Y , et al . Nonlinear model predictive control based on a self-organizing recurrent neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2): 402-415. |
10 | Cadet C , Beteau J F , Hernandez S C . Multicriteria control strategy for cost/quality compromise in wastewater treatment plants[J]. Control Engineering Practice, 2004, 12(3): 335-347. |
11 | Shen W , Chen X , Corriou J P . Application of model predictive control to the BSM1 benchmark of wastewater treatment process[J]. Computers & Chemical Engineering, 2008, 32(12): 2849-2856. |
12 | Stare A , Vrečko D , Hvala N , et al . Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: a simulation study[J]. Water Rresearch, 2007, 41(9): 2004-2014. |
13 | O’Brien M , Mack J , Lennox B , et al . Model predictive control of an activated sludge process: a case study[J]. Control Engineering Practice, 2011, 19(1): 54-61. |
14 | Sadeghassadi M , Macnab C J B , Westwick D . Design of a generalized predictive controller for a biological wastewater treatment plant[J]. Water Science and Technology, 2016, 73(8): 1986-2006. |
15 | Zhang K , Achari G , Sadiq R , et al . An integrated performance assessment framework for water treatment plants[J]. Water Research, 2012, 46(6): 1673-1683. |
16 | Han H G , Qian H H , Qiao J F . Nonlinear multiobjective model-predictive control scheme for wastewater treatment process[J]. Journal of Process Control, 2014, 24(3): 47-59. |
17 | Plakas K V , Georgiadis A A , Karabelas A J . Sustainability assessment of tertiary wastewater treatment technologies: a multi- criteria analysis[J]. Water Science and Technology, 2016, 73(7): 1532-1540. |
18 | Guerrero J , Guisasola A , Vilanova R , et al . Improving the performance of a WWTP control system by model-based setpoint optimisation[J]. Environmental Modelling & Software, 2011, 26(4): 492-497. |
19 | Dai H , Chen W , Lu X . The application of multi-objective optimization method for activated sludge process: a review[J]. Water Science and Technology, 2016, 73(2): 223-235. |
20 | Olsson G , Carlsson B , Comas J , et al . Instrumentation, control and automation in wastewater–from London 1973 to Narbonne 2013[J]. Water Science and Technology, 2014, 69(7): 1373-1385. |
21 | Francisco M , Skogestad S , Vega P . Model predictive control for the self-optimized operation in wastewater treatment plants: analysis of dynamic issues[J]. Computers & Chemical Engineering, 2015, 82(2): 259-272. |
22 | Sweetapple C , Fu G , Butler D . Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55(15): 52-62. |
23 | 周洪标 . 基于自组织模糊神经网络的污水处理过程溶解氧控制[J]. 化工学报, 2017, 68(4): 1516-1524. |
Zhou H B . Dissolved oxygen control of the wastewater treatment process using self-organizing fuzzy neural network[J]. CIESC Journal, 2017, 68(4): 1516-1524. | |
24 | Jeppsson U , Pons M N . The cost benchmark simulation model-current state and future perspective[J]. Control Engineering Practice, 2004, 12(3): 299-304. |
25 | Yang S X , Jiang S Y , Jiang Y . Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes[J]. Soft Computing, 2016, 21(2): 1-15. |
26 | 乔俊飞, 周红标 . 基于自组织模糊神经网络的出水总磷预测[J]. 控制理论与应用, 2017, 34(2): 224-232. |
Qiao J F , Zhou H B . Prediction of effluent total phosphorus based on self-organizing fuzzy neural network[J]. Control Theory and Appl., 2017, 34(2): 224-232. | |
27 | Qiao J F , Bo Y C , Chai W , et al . Adaptive optimal control for a wastewater treatment plant based on a data-driven method[J]. Water Science and Technology, 2013, 67(10): 2314-2320. |
28 | Sindhya K , Miettinen K , Deb K . A hybrid framework for evolutionary multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(4): 495-511. |
29 | 栗三一, 李文静, 乔俊飞 . 一种基于密度的局部搜索NSGA2算法[J]. 控制与决策, 2018, 33(1): 60-66. |
Li S Y , Li W J , Qiao J F . A local search NSGA2 algorithm based on density[J]. Control and Decision, 2018, 33(1): 60-66. | |
30 | Qiao J F , Zhang W . Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing and Applications, 2018, 29(11): 1261-1271. |
31 | 韩红桂, 张璐, 乔俊飞 . 基于多目标粒子群算法的污水处理智能优化控制[J]. 化工学报, 2016, 68(4): 1474-1481. |
Han H G , Zhang L , Qiao J F . Intelligent optimal control for wastewater treatment based on multi-objective particle swarm algorithm[J]. CIESC Journal, 2016, 68(4): 1474-1481. | |
32 | Qiao J F , Han G , Han H G . Neural network on line modeling and controlling method for multi variable control of wastewater treatment processes[J]. Asian Journal of Control, 2014, 16(4): 1213-1223. |
33 | Vega P , Revollar S , Francisco M , et al . Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs[J]. Computers & Chemical Engineering, 2014, 68(4): 78-95. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[5] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[8] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[9] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[10] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[11] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[12] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[13] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[14] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[15] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||