CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1722-1730.DOI: 10.11949/0438-1157.20241139
• Energy and environmental engineering • Previous Articles Next Articles
Shuli LIU1(), Wenhao ZHOU1, Shaoliang ZHANG1, Yongliang SHEN2(
)
Received:
2024-10-15
Revised:
2024-11-26
Online:
2025-05-12
Published:
2025-04-25
Contact:
Yongliang SHEN
通讯作者:
沈永亮
作者简介:
刘淑丽(1979—),女,博士,教授,shuli.liu@bit.edu.cn
基金资助:
CLC Number:
Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector[J]. CIESC Journal, 2025, 76(4): 1722-1730.
刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730.
仪器/设备 | 参数 |
---|---|
数据采集仪 | 型号 R7100 |
精度:±0.5℃ | |
热电偶 | 类型:K |
精度:±0.4% | |
测试范围:-60~260℃ | |
流量计 | 型号:K24 |
测试范围:0.5~20 L/min | |
最大工作压力:1.0 MPa | |
精度:±0.5% |
Table 1 Main parameters of instruments and sensors in the experimental system
仪器/设备 | 参数 |
---|---|
数据采集仪 | 型号 R7100 |
精度:±0.5℃ | |
热电偶 | 类型:K |
精度:±0.4% | |
测试范围:-60~260℃ | |
流量计 | 型号:K24 |
测试范围:0.5~20 L/min | |
最大工作压力:1.0 MPa | |
精度:±0.5% |
影响因素 | μ* | δ | δ/μ* |
---|---|---|---|
进口温度 | 4.8250 | 10.0250 | 2.0777 |
Reynolds数 | 0.0038 | 0.0020 | 0.5263 |
Table 2 Sensitivity of heat release rate to affecting factors based on Morris method
影响因素 | μ* | δ | δ/μ* |
---|---|---|---|
进口温度 | 4.8250 | 10.0250 | 2.0777 |
Reynolds数 | 0.0038 | 0.0020 | 0.5263 |
30 | Soni K, Panwar N L. Revolutionizing thermal energy storage: an overview of porous support materials for advanced composite phase change materials (PCMs)[J]. Progress in Engineering Science, 2024, 1(4): 100023. |
31 | Zhou D, Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering, 2011, 31(5): 970-977. |
32 | Menberg K, Heo Y, Choudhary R. Sensitivity analysis methods for building energy models: comparing computational costs and extractable information[J]. Energy and Buildings, 2016, 133: 433-445. |
33 | Zeferina V, Wood F R, Edwards R, et al. Sensitivity analysis of cooling demand applied to a large office building[J]. Energy and Buildings, 2021, 235: 110703. |
34 | Saurbayeva A, Ali Memon S, Kim J. Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones[J]. Energy, 2023, 278: 127973. |
35 | Zhang Q, Wang H C, Ling Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells, 2015, 140: 158-166. |
1 | Zhao R K, Zhao L, Deng S, et al. Trends in patents for solar thermal utilization in China[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 852-862. |
2 | 屈健, 田敏, 王谦, 等. 碳纳米管-水纳米流体的光热转化特性[J]. 化工学报, 2016, 67(S2): 113-119. |
Qu J, Tian M, Wang Q, et al. Photothermal conversion characteristics of carbon nanotubes-water nanofluids[J]. CIESC Journal, 2016, 67(S2): 113-119. | |
3 | Shen Y L, Liu S L, Rehman Mazhar A, et al. Phase change materials embedded with tuned porous media to alleviate overcharging problem of cascaded latent heat storage system for building heating[J]. Energy and Buildings, 2023, 281: 112746. |
4 | Qu J, Zhang R M, Wang Z H, et al. Photo-thermal conversion properties of hybrid CuO-MWCNT/H2O nanofluids for direct solar thermal energy harvest[J]. Applied Thermal Engineering, 2019, 147: 390-398. |
5 | Joseph A, Thomas S. Energy, exergy and corrosion analysis of direct absorption solar collector employed with ultra-high stable carbon quantum dot nanofluid[J]. Renewable Energy, 2022, 181: 725-737. |
6 | 艾雄杰, 袁俊, 吕伟中, 等. 基于相变储热的集成式太阳能集热器研究进展[J]. 储能科学与技术, 2024, 13(12): 4409-4420. |
Ai X J, Yuan J, Lv W Z, et al. Research progress of integrated solar collector based on phase change heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4409-4420. | |
7 | Sadeghi G, Mehrali M, Shahi M, et al. Experimental analysis of shape-stabilized PCM applied to a direct-absorption evacuated tube solar collector exploiting sodium acetate trihydrate and graphite[J]. Energy Conversion and Management, 2022, 269: 116176. |
8 | Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector[J]. Solar Energy, 1975, 17(3): 179-183. |
9 | Hasan A, Alazzam A, Abu-Nada E. Direct absorption solar collectors: fundamentals, modeling approaches, design and operating parameters, advances, knowledge gaps, and future prospects[J]. Progress in Energy and Combustion Science, 2024, 103: 101160. |
10 | 刘萍, 邱雨生, 李世婧, 等. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
Liu P, Qiu Y S, Li S J, et al. Heat transfer and flow characteristics of nanofluids in microchannels[J]. CIESC Journal, 2025, 76(1): 184-197. | |
11 | Wang Q R, Yang L, Zhao N, et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection[J]. Applied Thermal Engineering, 2023, 219: 119476. |
12 | Zhu W L, Zuo X H, Ding Y M, et al. Experimental comparison of the photothermal conversion performance of coal and plant soot nanofluids for direct absorption solar collectors[J]. Solar Energy, 2023, 264: 112056. |
13 | Chen Y J, Zhang Y L, Lan H Y, et al. Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector[J]. Renewable Energy, 2023, 215: 118988. |
14 | Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041004. |
15 | Zheng D, Yao J, Zhu H X, et al. Optimizing photothermal conversion efficiency in a parabolic trough direct absorption solar collector through ferrofluid and magnetic field synergy[J]. Energy Conversion and Management, 2023, 285: 117020. |
16 | 马非, 张鹏. 基于相变浆体的直接吸收式太阳能集热器研究[J]. 工程热物理学报, 2019, 40(8): 1852-1856. |
Ma F, Zhang P. Investigation on phase change slurry based direct absorption solar collector[J]. Journal of Engineering Thermophysics, 2019, 40(8): 1852-1856. | |
17 | Kan C M, Chang S W, Li J Y, et al. Optically manipulated nitrate-salt-based direct absorption solar collectors for a photothermal energy harvesting system[J]. Chemical Engineering Journal, 2024, 498: 155317. |
18 | 刘昌会, 肖桐, 刘庆祎, 等. 多孔二氧化钛强化的相变材料储热机理研究[J]. 化工学报, 2024, 75(2): 706-714. |
Liu C H, Xiao T, Liu Q Y, et al. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials[J]. CIESC Journal, 2024, 75(2): 706-714. | |
19 | Zhou M, Tan Y, Chen R, et al. Erythritol supported by carbon nanotubes reinforced alumina-silica aerogels as novel form-stable phase change materials with high photothermal conversion efficiency and greatly suppressed supercooling[J]. Journal of Energy Storage, 2024, 90: 111909. |
20 | Li S Y, Yan T, Huo Y J, et al. Polydopamine/copper nanoparticles synergistically modified carbon foam/octadecanol composite phase change materials for photothermal energy conversion and storage[J]. Chemical Engineering Science, 2024, 300: 120601. |
21 | Xiao Q Q, Cao J H, Zhang Y X, et al. The application of solar-to-thermal conversion phase change material in novel solar water heating system[J]. Solar Energy, 2020, 199: 484-490. |
22 | Zhang Y F, Tang J B, Chen J L, et al. Accelerating the solar-thermal energy storage via inner-light supplying with optical waveguide[J]. Nature Communications, 2023, 14: 3456. |
23 | Kumar S, Chander N, Gupta V K, et al. Progress, challenges and future prospects of plasmonic nanofluid based direct absorption solar collectors—a state-of-the-art review[J]. Solar Energy, 2021, 227: 365-425. |
24 | Baro R K, Kotecha P, Anandalakshmi R. Multi-objective optimization of nanofluid-based direct absorption solar collector for low-temperature applications[J]. Journal of Building Engineering, 2023, 72: 106258. |
25 | Albdour S A, Haddad Z, Sharaf O Z, et al. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: fundamentals, recent advances, and future directions[J]. Progress in Energy and Combustion Science, 2022, 93: 101037. |
26 | Tripathi B M, Shukla S K, Rathore P K S. A comprehensive review on solar to thermal energy conversion and storage using phase change materials[J]. Journal of Energy Storage, 2023, 72: 108280. |
27 | Zhang T, Yan Z W, Wang L Y, et al. Theoretical analysis and experimental study on a low-temperature heat pump sludge drying system[J]. Energy, 2021, 214: 118985. |
28 | Yang Y A, Li R S, Zhu Y Q, et al. Experimental and simulation study of air source heat pump for residential applications in Northern China[J]. Energy and Buildings, 2020, 224: 110278. |
29 | Muraleedharan Nair A, Wilson C, Kamkari B, et al. Advancing thermal performance in PCM-based energy storage: a comparative study with fins, expanded graphite, and combined configurations[J]. Energy Conversion and Management: X, 2024, 23: 100627. |
[1] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[2] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
[3] | Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen [J]. CIESC Journal, 2025, 76(4): 1731-1741. |
[4] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[5] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
[6] | Lyusheng ZHANG, Zhihong WANG, Qing LIU, Xuewen LI, Renmin TAN. Research progress in carbon dioxide capture using liquid-liquid phase change absorbents [J]. CIESC Journal, 2025, 76(3): 933-950. |
[7] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
[8] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
[9] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
[10] | Lingya YUAN, Ying ZHANG. The growth of PV sector in China and its implications for the resource and environmental sustainability [J]. CIESC Journal, 2024, 75(S1): 14-24. |
[11] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[12] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
[13] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[14] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[15] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||