1 |
Hagen J. Industrial Catalysis[M]. Weinheim, Germany: Wiley, 2015.
|
2 |
Shakor Z M, Al-Shafei E N. The mathematical catalyst deactivation models: a mini review[J]. RSC Advances, 2023, 13(32): 22579-22592.
|
3 |
Al-Rumaihi A, Shahbaz M, Mckay G, et al. A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112715.
|
4 |
Smith R. Chemical Process Design and Integration [M]. 2nd ed. Chichester, West Sussex, United Kingdom: Wiley, 2016.
|
5 |
Xie T, Zhang Z Y, Zheng H Y, et al. Performance optimization of a cavity type concentrated solar reactor for methane dry reforming reaction with coupled optics-CFD modeling[J]. Chemical Engineering Science, 2023, 275: 118737.
|
6 |
Yadav D, Lu X L, Vishwakarma C B, et al. Advancements in microreactor technology for hydrogen production via steam reforming: a comprehensive review of experimental studies[J]. Journal of Power Sources, 2023, 585: 233621.
|
7 |
Ribeiro A T S, Araújo Í R S, da Silva E F M, et al. Improvement of Ni-based catalyst properties and activity for dry reforming of methane by application of all-in-one preparation method[J]. Journal of Materials Science, 2023, 58(8): 3568-3581.
|
8 |
Gao N B, Salisu J, Quan C, et al. Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111023.
|
9 |
Garcia I, Santamaria L, Lopez G, et al. Steps to understand the role played by the main operating conditions in the oxidative steam reforming of biomass fast pyrolysis volatiles[J]. Chemical Engineering Journal, 2023, 475: 146223.
|
10 |
Santamaria L, Lopez G, Fernandez E, et al. Progress on catalyst development for the steam reforming of biomass and waste plastics pyrolysis volatiles: a review[J]. Energy & Fuels, 2021, 35(21): 17051-17084.
|
11 |
Zhang X R, Zhu X R, Bo S W, et al. Identifying and tailoring C—N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst[J]. Nature Communications, 2022, 13(1): 5337.
|
12 |
Navarrete L F, Atienza-Martínez M, Reyero I, et al. Comparative study of supported Ni and co catalysts prepared using the all-in-one method in the hydrogenation of CO2: effects of using (poly)vinyl alcohol (PVA) as an additive[J]. Catalysts, 2024, 14(1): 47.
|
24 |
Fogler H S. Elements of Chemical Reaction Engineering [M]. 6th ed. Boston: Pearson, 2020.
|
25 |
Chen Z H, Sun H J, Peng Z K, et al. Selective hydrogenation of benzene: progress of understanding for the Ru-based catalytic system design[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13794-13803.
|
26 |
孙海杰, 李永宇, 李帅辉, 等. Ru-Zn催化剂上苯选择加氢制环己烯中试及其N中毒和再生[J]. 石油化工, 2014, 43(10): 1137-1143.
|
|
Sun H J, Li Y Y, Li S H, et al. Performance of Ru-Zn catalyst for selective hydrogenation of benzene to cyclohexene in a pilot plant: N poisoning and regeneration[J]. Petrochemical Technology, 2014, 43(10): 1137-1143.
|
27 |
刘寿长, 朱伯仲, 罗鸽, 等. 苯部分加氢制环己烯的非晶态Ru-M-B/ZrO2催化剂的表征[J]. 分子催化, 2002, 16(3): 217-222.
|
|
Liu S C, Zhu B, Luo G, et al. Characterization of amorphous Ru-M-B/ZrO2 catalysts for partial hydrogenation of benzene to cyclohexene[J]. Journal of Molecular Catalysis, 2002, 16(3): 217-222.
|
28 |
刘寿长, 罗鸽, 王海荣, 等. 液相法Ru-M-B/ZrO2催化苯选择加氢制环己烯反应条件的研究[J]. 催化学报, 2002, 23(4): 317-320.
|
|
Liu S C, Luo G, Wang H R, et al. Study on operation conditions for liquid phase selective hydrogenation of benzene to cyclohexene over Ru-M-B/ZrO2 catalyst[J]. Chinese Journal of Catalysis, 2002, 23(4): 317-320.
|
13 |
García-Moncada N, Cents T, van Rooij G, et al. Minimizing carbon deposition in plasma-induced methane coupling with structured hydrogenation catalysts[J]. Journal of Energy Chemistry, 2021, 58: 271-279.
|
14 |
Castellanos E, Valverde J L, Navarro M C. Temperature optimization in a gas reactor for the synthesis of carbon nanofibers: a numerical approach[J]. Thermal Science and Engineering Progress, 2023, 42: 101915.
|
15 |
Huang Y, Zhang Z H, Long Y X, et al. Hydrogen production and energy efficiency optimization of exhaust reformer for marine NG engines: a view of surface reaction kinetics[J]. Fuel, 2023, 336: 127051.
|
16 |
Garcia I, Lopez G, Santamaria L, et al. Biomass source influence on hydrogen production through pyrolysis and in line oxidative steam reforming[J]. ChemSusChem, 2024: e202400325.
|
17 |
Pafili A, Charisiou N, Douvartzides S, et al. Recent progress in the steam reforming of bio-oil for hydrogen production: a review of operating parameters, catalytic systems and technological innovations[J]. Catalysts, 2021, 11(12): 1526.
|
18 |
Ryu J, Maravelias C T. A generalized distillation network synthesis model[J]. Chemical Engineering Science, 2021, 244: 116766.
|
19 |
Zhang D, Wang P, Liu G L. A novel sensitivity analysis method for the energy consumption of coupled reactor and heat exchanger network system[J]. Energy & Fuels, 2018, 32(6): 7210-7219.
|
20 |
Lv D H, Liu G L. Optimization of distillation sequence based on integration of reaction-separation system[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3093-3103.
|
21 |
Zhang D, Lv D H, Yin C F, et al. Combined pinch and mathematical programming method for coupling integration of reactor and threshold heat exchanger network[J]. Energy, 2020, 205: 118070.
|
22 |
Yin C F, Sun H F, Lv D H, et al. Integrated design and optimization of reactor-distillation sequence-recycle-heat exchanger network[J]. Energy, 2022, 238: 121796.
|
23 |
赵丽文, 刘桂莲. 苯加氢制环己烯装置能量系统集成及催化剂再生周期优化[J]. 化工学报, 2022, 73(12): 5494-5503.
|
|
Zhao L W, Liu G L. Energy system integration and catalyst regeneration cycle optimization of benzene hydrogenation to cyclohexene process[J]. CIESC Journal, 2022, 73(12): 5494-5503.
|