CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 532-542.DOI: 10.11949/0438-1157.20241277
• Reviews and monographs • Previous Articles
Chenlong GUO1,2(), Zhengqi PENG1,2, Bingxue JIANG1,2, Zhengkai WU1,2, Deliang WANG2(
), Qingyue WANG2(
), Jieyuan ZHENG2, Lim Khak Ho2, Shengbin SHI2, Xuan YANG1,2, Pingwei LIU1,2, Wenjun WANG1,2(
)
Received:
2024-11-11
Revised:
2024-12-13
Online:
2025-03-10
Published:
2025-03-25
Contact:
Deliang WANG, Qingyue WANG, Wenjun WANG
郭琛龙1,2(), 彭正奇1,2, 姜冰雪1,2, 吴正凯1,2, 王德良2(
), 王青月2(
), 郑杰元2, Ho Lim Khak2, 史胜斌2, 杨轩1,2, 刘平伟1,2, 王文俊1,2(
)
通讯作者:
王德良,王青月,王文俊
作者简介:
郭琛龙(1998—),男,硕士研究生,22328116@zju.edu.cn
基金资助:
CLC Number:
Chenlong GUO, Zhengqi PENG, Bingxue JIANG, Zhengkai WU, Deliang WANG, Qingyue WANG, Jieyuan ZHENG, Lim Khak Ho, Shengbin SHI, Xuan YANG, Pingwei LIU, Wenjun WANG. Advances in upcycling of post-consumer PET[J]. CIESC Journal, 2025, 76(2): 532-542.
郭琛龙, 彭正奇, 姜冰雪, 吴正凯, 王德良, 王青月, 郑杰元, Ho Lim Khak, 史胜斌, 杨轩, 刘平伟, 王文俊. 退役PET高值回用的研究进展[J]. 化工学报, 2025, 76(2): 532-542.
回收方法 | 催化剂 | 主产物 | 文献 |
---|---|---|---|
光催化 | CdS/CdO x | 甲酸、乙酸酯、乳酸、H2 | [ |
Pt/g-C3N4 | 甲酸、H2 | [ | |
CN x /Ni2P | 醋酸、甲酸、乙醇酸、乙二醛、H2 | [ | |
d-NiPS3/CdS | 甲酸酯、乙酸、乙醇酸、H2 | [ | |
MoS2/Cd x Zn1-x S | 甲酸盐、乙醇酸盐甲基乙二醛、H2 | [ | |
碳化量子点/g-C3N4 | 乙醇酸、乙醇醛、乙醇、H2 | [ | |
g-C3N4-CNTs-NiMo | 乙二醛、乙醇酸盐、H2 | [ | |
电催化 | AuNi(OH)2 | 乙醇酸、H2 | [ |
CoNi x P/NF | 二甲酸钾、TPA、H2 | [ | |
Pt1/Ni(OH)2 | 二甲酸钾、TPA、H2 | [ | |
Pd67Ag33合金气凝胶 | 甲酸、乙醇酸、H2 | [ | |
NiCu/NF | 甲酸盐、H2 | [ | |
NiCo2O4、SnO2 | 甲酸、H2 | [ | |
氢解 | Ru-PNN配合物 | TPA、EG | [ |
膦-二胺配体的Ru配合物 | TPA、EG | [ | |
基于氮杂环卡宾的钳形锰催化剂 | TPA、EG | [ | |
CoMo@NC | TPA、EG | [ |
Table 1 Research progress in upcycling of post-consumer PET to produce high-value small molecule compounds
回收方法 | 催化剂 | 主产物 | 文献 |
---|---|---|---|
光催化 | CdS/CdO x | 甲酸、乙酸酯、乳酸、H2 | [ |
Pt/g-C3N4 | 甲酸、H2 | [ | |
CN x /Ni2P | 醋酸、甲酸、乙醇酸、乙二醛、H2 | [ | |
d-NiPS3/CdS | 甲酸酯、乙酸、乙醇酸、H2 | [ | |
MoS2/Cd x Zn1-x S | 甲酸盐、乙醇酸盐甲基乙二醛、H2 | [ | |
碳化量子点/g-C3N4 | 乙醇酸、乙醇醛、乙醇、H2 | [ | |
g-C3N4-CNTs-NiMo | 乙二醛、乙醇酸盐、H2 | [ | |
电催化 | AuNi(OH)2 | 乙醇酸、H2 | [ |
CoNi x P/NF | 二甲酸钾、TPA、H2 | [ | |
Pt1/Ni(OH)2 | 二甲酸钾、TPA、H2 | [ | |
Pd67Ag33合金气凝胶 | 甲酸、乙醇酸、H2 | [ | |
NiCu/NF | 甲酸盐、H2 | [ | |
NiCo2O4、SnO2 | 甲酸、H2 | [ | |
氢解 | Ru-PNN配合物 | TPA、EG | [ |
膦-二胺配体的Ru配合物 | TPA、EG | [ | |
基于氮杂环卡宾的钳形锰催化剂 | TPA、EG | [ | |
CoMo@NC | TPA、EG | [ |
60 | Uekert T, Kuehnel M F, Wakerley D W, et al. Plastic waste as a feedstock for solar-driven H2 generation[J]. Energy & Environmental Science, 2018, 11(10): 2853-2857. |
61 | Li M, Zhang S B. Tandem chemical depolymerization and photoreforming of waste PET plastic to high-value-added chemicals[J]. ACS Catalysis, 2024, 14(5): 2949-2958. |
62 | Wang G H, Chen Z J, Wei W, et al. Electrocatalysis-driven sustainable plastic waste upcycling[J]. Electron, 2024, 2(2): e34. |
63 | Yan Y F, Zhou H, Xu S M, et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities[J]. Journal of the American Chemical Society, 2023, 145(11): 6144-6155. |
64 | Carta D, Cao G, D'Angeli C. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis[J]. Environmental Science and Pollution Research, 2003, 10(6): 390-394. |
65 | Jiang X L, Chang Z L, Yang L, et al. Hydrogenation of waste PET degraded bis(2-hydroxyethyl)cyclohexane-1,4-dicarboxylate to 1,4-cyclohexanedimethanol over Cu-based catalysts[J]. Fuel, 2024, 363: 130944. |
66 | Uekert T, Kasap H, Reisner E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst[J]. Journal of the American Chemical Society, 2019, 141(38): 15201-15210. |
67 | Zhang S, Li H B, Wang L, et al. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets[J]. Journal of the American Chemical Society, 2023, 145(11): 6410-6419. |
68 | Du M M, Zhang Y, Kang S L, et al. Trash to treasure: photoreforming of plastic waste into commodity chemicals and hydrogen over MoS2-tipped CdS nanorods[J]. ACS Catalysis, 2022, 12(20): 12823-12832. |
69 | Han M, Zhu S J, Xia C L, et al. Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals[J]. Applied Catalysis B: Environmental, 2022, 316: 121662. |
70 | Gong X Q, Tong F X, Ma F H, et al. Photoreforming of plastic waste poly(ethylene terephthalate) via in situ derived CN-CNTs-NiMo hybrids[J]. Applied Catalysis B: Environment and Energy, 2022, 307: 121143. |
71 | Zhou H, Ren Y, Li Z H, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679. |
72 | Song M W, Wu Y F, Zhao Z Y, et al. Corrosion engineering of part-per-million single atom Pt1/Ni(OH)2 electrocatalyst for PET upcycling at ampere-level current density[J]. Advanced Materials, 2024, 36(23): e2403234. |
73 | Chen J L, Zhang F Z, Kuang M, et al. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(17): e2318853121. |
74 | Kang H X, He D, Yan X X, et al. Cu promoted the dynamic evolution of Ni-based catalysts for polyethylene terephthalate plastic upcycling[J]. ACS Catalysis, 2024, 14(7): 5314-5325. |
75 | Wang J Y, Li X, Wang M L, et al. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid[J]. ACS Catalysis, 2022, 12(11): 6722-6728. |
76 | Krall E M, Klein T W, Andersen R J, et al. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(Ⅱ) PNN pincer complexes[J]. Chemical Communications, 2014, 50(38): 4884-4887. |
77 | Fuentes J A, Smith S M, Scharbert M T, et al. On the functional group tolerance of ester hydrogenation and polyester depolymerisation catalysed by ruthenium complexes of tridentate aminophosphine ligands[J]. Chemistry-A European Journal, 2015, 21(30): 10851-10860. |
78 | Wei Z Y, Li H X, Wang Y J, et al. A tailored versatile and efficient NHC-based NNC-pincer manganese catalyst for hydrogenation of polar unsaturated compounds[J]. Angewandte Chemie International Edition, 2023, 62(23): e202301042. |
79 | Wu P Y, Lu G P, Cai C. Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters[J]. Green Chemistry, 2021, 23(21): 8666-8672. |
80 | Zhang M H, Yu Y K, Yan B H, et al. Full valorisation of waste PET into dimethyl terephthalate and cyclic arylboronic esters[J]. Applied Catalysis B: Environment and Energy, 2024, 352: 124055. |
81 | Li Y W, Wang M, Liu X W, et al. Catalytic transformation of PET and CO2 into high-value chemicals[J]. Angewandte Chemie International Edition, 2022, 61(10): e202117205. |
82 | Velásquez E J, Garrido L, Guarda A, et al. Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays[J]. Applied Clay Science, 2019, 180: 105185. |
83 | Belioka M P, Markozanne G, Chrissopoulou K, et al. Advanced plastic waste recycling—the effect of clay on the morphological and thermal behavior of recycled PET/PLA sustainable blends[J]. Polymers, 2023, 15(14): 3145. |
84 | Paszkiewicz S, Irska I, Piesowicz E. Environmentally friendly polymer blends based on post-consumer glycol-modified poly(ethylene terephthalate) (PET-G) foils and poly(ethylene 2,5-furanoate) (PEF): preparation and characterization[J]. Materials, 2020, 13(12): 2673. |
85 | Sangkhawasi M, Remsungnen T, Vangnai A S, et al. Prediction of the glass transition temperature in polyethylene terephthalate/polyethylene vanillate (PET/PEV) blends: a molecular dynamics study[J]. Polymers, 2022, 14(14): 2858. |
86 | 张丰. 基于聚丁二酸乙二醇酯预聚体的新型多嵌段共聚酯的合成、结构与性能研究[D]. 北京: 北京化工大学, 2023. |
Zhang F. Synthesis, structure and properties of novel multiblock copolyesters based on poly(ethylene succinate) prepolymer[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
87 | Li S Z, Wang W, Yu L, et al. Influence of different compatibilizers on the morphology and properties of PA6/PET/glass fiber composites[J]. Journal of Applied Polymer Science, 2018, 135(26): e46429. |
88 | Li S C, Lu L N, Zeng W. Thermostimulative shape-memory effect of reactive compatibilized high-density polyethylene/poly(ethylene terephthalate) blends by an ethylene-butyl acrylate-glycidyl methacrylate terpolymer[J]. Journal of Applied Polymer Science, 2009, 112(6): 3341-3346. |
89 | Tahmasebi F, Jafari S H, Farnia S M F. SbB-g-GMA copolymer as a dual functional reactive compatibilizer and impact modifier for potential recycling of PET and PS via melt blending approach[J]. Journal of Polymers and the Environment, 2023, 31(7): 3106-3119. |
90 | Martey S, Jamalzadeh M, Chen W T, et al. The role of nanoclay in processing immiscible polypropylene and poly(ethylene terephthalate) waste blends using twin screw extrusion[J]. Composites Part B: Engineering, 2024, 276: 111320. |
91 | Coba-Daza S, Otaegi I, Aramburu N, et al. Unlocking superior properties in polypropylene/polyethylene terephthalate (PP/PET) blends using an ethylene-butylene-acrylate terpolymer reactive compatibilizer[J]. Polymer Testing, 2024, 130: 108293. |
92 | Shahrajabian H, Sadeghian F. The investigation of alumina nanoparticles' effects on the mechanical and thermal properties of HDPE/rPET/MAPE blends[J]. International Nano Letters, 2019, 9(3): 213-219. |
93 | Wang D R, Luo F L, Luo C H. A novel blend material to improve the crystallization and mechanical properties of poly (ethylene terephthalate)[J]. Journal of Polymer Research, 2019, 26(7): 170. |
94 | Han K H, Jang M G, Juhn K J, et al. The effects of compatibilizers on the morphological, mechanical, and optical properties of biaxially oriented poly(ethylene terephthalate)/syndiotactic polystyrene blend films[J]. Macromolecular Research, 2018, 26(3): 254-262. |
1 | Ren T X, Zhan H H, Xu H Z, et al. Recycling and high-value utilization of polyethylene terephthalate wastes: a review[J]. Environmental Research, 2024, 249: 118428. |
2 | Hu B, Wang S, Yan J B, et al. Review of waste plastics treatment and utilization: efficient conversion and high value utilization[J]. Process Safety and Environmental Protection, 2024, 183: 378-398. |
3 | Wang T, Liu B, Xue Y J, et al. Effect of textile waste on incineration behavior of dyeing sludge: combustion characteristics, gas emissions, kinetics[J]. Journal of Cleaner Production, 2024, 435: 140619. |
4 | Melikoglu M, Asci A. Quantification of Turkey's wasted, landfilled, recycled and combusted PET[J]. Environmental Development, 2022, 44: 100773. |
5 | Gong H, Li R X, Li F, et al. Microplastic pollution in water environment of typical nature reserves and scenery districts in Southern China[J]. Science of the Total Environment, 2023, 903: 166628. |
6 | Sinha V, Patel M R, Patel J V. Pet waste management by chemical recycling: a review[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25. |
7 | Chen J K, Dul S, Lehner S, et al. Mechanical recycling of PET containing mixtures of phosphorus flame retardants[J]. Journal of Materials Science & Technology, 2024, 194: 167-179. |
8 | Liu Y F, Fu W M, Liu T, et al. Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105414. |
9 | Yoshioka T, Kitagawa E, Mizoguchi T, et al. High selective conversion of poly(ethylene terephthalate) into oil using Ca(OH)2 [J]. Chemistry Letters, 2004, 33(3): 282-283. |
10 | Qiu J R, Chen Y X, Zhang L Q, et al. A comprehensive review on enzymatic biodegradation of polyethylene terephthalate[J]. Environmental Research, 2024, 240: 117427. |
11 | Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases[J]. Nature, 1977, 270(5632): 76-78. |
12 | Mican J, Jaradat D M M, Liu W D, et al. Exploring new galaxies: perspectives on the discovery of novel PET-degrading enzymes[J]. Applied Catalysis B: Environmental, 2024, 342: 123404. |
95 | Lotfi M. Optimization of catalyst content for recycled polyethylene terephthalate (PET) and polycarbonate (PC) blending[J]. Polymer Bulletin, 2023, 80(11): 12319-12331. |
96 | Si G F, Li C, Chen M, et al. Polymer multi-block and multi-block+ strategies for the upcycling of mixed polyolefins and other plastics[J]. Angewandte Chemie International Edition, 2023, 62(49): e202311733. |
97 | Padhan R K, Gupta A A. Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction[J]. Construction and Building Materials, 2018, 158: 337-345. |
98 | Li F, Yao X Q, Ding R, et al. Directional glycolysis of waste PET using deep eutectic solvents for preparation of aromatic-based polyurethane elastomers[J]. Green Chemistry, 2024, 26(18): 9802-9813. |
99 | Zhou X, Wang G S, Li D X, et al. Shape-memory polyurethane elastomer originated from waste PET plastic and their composites with carbon nanotube for sensitive and stretchable strain sensor[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107920. |
100 | Zhang Y, Tian F, Wu Z S, et al. Chemical conversion of waste PET to valued-added bis(2-hydroxyethyl) terephthalamide through aminolysis[J]. Materials Today Communications, 2022, 32: 104045. |
101 | Chen Y H, Ranganathan P, Lee Y H, et al. New strategy and polymer design to synthesize polyamide 66 (PA66) copolymers with aromatic moieties from recycled PET (rPET)[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3518-3528. |
102 | Bambalaza S E, Xakalashe B S, Coetsee Y, et al. Co-carbonization of discard coal with waste polyethylene terephthalate towards the preparation of metallurgical coke[J]. Materials, 2023, 16(7): 2782. |
103 | Wang R, Chen X H, Li Q Y, et al. Solvothermal preparation of nitrogen and phosphorus-doped carbon dots with PET waste as precursor and its application[J]. Materials Today Communications, 2023, 34: 104918. |
104 | Yuan X Z, Kumar N M, Brigljević B, et al. Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO2 capture[J]. Green Chemistry, 2022, 24(4): 1494-1504. |
105 | Gong Z, Dai Z K, Dong Z Y, et al. Green synthesis of luminescent La-MOF nanoparticle from waste poly(ethylene terephthalate) for high-performance in Fe(Ⅲ) detection[J]. Rare Metals, 2024, 43(8): 3833-3843. |
106 | Wang C Y, Chu H Y, Wang C C. Converting waste PET plastics to high value-added MOFs-based functional materials: a state of the art review[J]. Coordination Chemistry Reviews, 2024, 518: 216106. |
13 | Zhang S B, Xue Y Y, Wu Y F, et al. PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis[J]. Chemical Science, 2023, 14(24): 6558-6563. |
14 | Pham D D, Cho J. Low-energy catalytic methanolysis of poly(ethyleneterephthalate)[J]. Green Chemistry, 2021, 23(1): 511-525. |
15 | Le N H, Ngoc Van T T, Shong B, et al. Low-temperature glycolysis of polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(51): 17261-17273. |
16 | Shukla S R, Harad A M. Aminolysis of polyethylene terephthalate waste[J]. Polymer Degradation and Stability, 2006, 91(8): 1850-1854. |
17 | Jiang H Y, Zhou J H, Zhou Q, et al. Microwave assisted plastic waste derived O vacancies enriched cobalt oxide/porous carbon material for highly efficient carbamazepine degradation via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2024, 489: 151256. |
18 | Cho J, Kim B, Kwon T, et al. Electrocatalytic upcycling of plastic waste[J]. Green Chemistry, 2023, 25(21): 8444-8458. |
19 | Kim S, Kong D, Zheng X L, et al. Upcycling plastic wastes into value-added products via electrocatalysis and photoelectrocatalysis[J]. Journal of Energy Chemistry, 2024, 91: 522-541. |
20 | Liu S B, Kots P A, Vance B C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17): eabf8283. |
21 | Jehanno C, Alty J W, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers[J]. Nature, 2022, 603(7903): 803-814. |
22 | Ügdüler S, van Geem K M, Denolf R, et al. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis[J]. Green Chemistry, 2020, 22(16): 5376-5394. |
23 | Kim N K, Lee S H, Park H D. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: a critical review[J]. Bioresource Technology, 2022, 363: 127931. |
24 | Pang K, Kotek R, Tonelli A. Review of conventional and novel polymerization processes for polyesters[J]. Progress in Polymer Science, 2006, 31(11): 1009-1037. |
25 | Ghosal K, Nayak C. Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype[J]. Materials Advances, 2022, 3(4): 1974-1992. |
26 | Chan K, Zinchenko A. Design and synthesis of functional materials by chemical recycling of waste polyethylene terephthalate (PET) plastic: opportunities and challenges[J]. Journal of Cleaner Production, 2023, 433: 139828. |
27 | Bai X S, Aireddy D R, Roy A, et al. Solvent-free depolymerization of plastic waste enabled by plastic-catalyst interfacial engineering[J]. Angewandte Chemie International Edition, 2023, 62(46): e202309949. |
28 | Cao R C, Zhang M Q, Jiao Y C, et al. Co-upcycling of polyvinyl chloride and polyesters[J]. Nature Sustainability, 2023, 6: 1685-1692. |
29 | Carniel A, Ferreira dos Santos N, Buarque F S, et al. From trash to cash: current strategies for bio-upcycling of recaptured monomeric building blocks from poly(ethylene terephthalate) (PET) waste[J]. Green Chemistry, 2024, 26(10): 5708-5743. |
30 | Gao P, Lv H, Qian S K, et al. One-step synthesized solid acid catalyst with high Zr content for efficient and green PET degradation in supercritical CO2 [J]. Industrial & Engineering Chemistry Research, 2024, 63(17): 7593-7604. |
31 | Sun Q, Zheng Y Y, Yun L X, et al. Fe3O4 nanodispersions as efficient and recoverable magnetic nanocatalysts for sustainable PET glycolysis[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(19): 7586-7595. |
32 | Cheng J N, Xie J, Xi Y J, et al. Selective upcycling of polyethylene terephthalate towards high-valued oxygenated chemical methyl p-methyl benzoate using a Cu/ZrO2 catalyst[J]. Angewandte Chemie International Edition, 2024, 63(11): e202319896. |
33 | Yun L X, Wu H, Shen Z G, et al. Ultrasmall CeO2 nanoparticles with rich oxygen defects as novel catalysts for efficient glycolysis of polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(16): 5278-5287. |
34 | Otton J, Ratton S, Vasnev V A, et al. Investigation of the formation of poly(ethylene terephthalate) with model molecules: kinetics and mechanisms of the catalytic esterification and alcoholysis reactions(Ⅱ): Catalysis by metallic derivatives (monofunctional reactants)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1988, 26(8): 2199-2224. |
35 | MacDonald W. New advances in poly(ethylene terephthalate) polymerization and degradation[J]. Polymer International, 2002, 51(10): 923-930. |
36 | Apicella B, Di Serio M, Fiocca L, et al. Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) investigated with model molecules[J]. Journal of Applied Polymer Science, 1998, 69(12): 2423-2433. |
37 | Marullo S, Rizzo C, Dintcheva N T, et al. Amino acid-based cholinium ionic liquids as sustainable catalysts for PET depolymerization[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(45): 15157-15165. |
38 | Zhou L, Lu X M, Ju Z Y, et al. Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts[J]. Green Chemistry, 2019, 21(4): 897-906. |
39 | Kirstein M, Lücking C, Biermann L, et al. Monomer recycling and repolymerization of post-consumer polyester textiles[J]. Chemie Ingenieur Technik, 2023, 95(8): 1290-1296. |
40 | Yu Y, Shen G L, Xu T J, et al. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET[J]. RSC Advances, 2023, 13(51): 36337-36345. |
41 | Zhang S B, Hu Q K, Zhang Y X, et al. Depolymerization of polyesters by a binuclear catalyst for plastic recycling[J]. Nature Sustainability, 2023, 6: 965-973. |
42 | Peng Y T, Yang J, Deng C Q, et al. Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study[J]. Nature Communications, 2023, 14(1): 3249. |
43 | Rahimi A, García J M. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1: 46. |
44 | 张红明, 赵君宇, 高凤翔, 等. PET的解聚-共缩聚“一锅法”合成生物降解高分子的研究[J]. 高分子学报, 2022, 53(9): 1142-1149. |
Zhang H M, Zhao J Y, Gao F X, et al. Synthesis of biodegradable polymers by “one pot” depolymerization and polycondensation of PET[J]. Acta Polymerica Sinica, 2022, 53(9): 1142-1149. | |
45 | Paek K H, Im S G. Biodegradable aromatic-aliphatic copolyesters derived from bis(2-hydroxyethyl) terephthalate for sustainable flexible packaging applications[J]. ACS Applied Polymer Materials, 2022, 4(8): 5298-5307. |
46 | Qin L D, Li X X, Ren G, et al. Closed-loop polymer-to-polymer upcycling of waste poly (ethylene terephthalate) into biodegradable and programmable materials[J]. ChemSusChem, 2024, 17(13): e202301781. |
47 | Panchal S S, Vasava D V. Biodegradable polymeric materials: synthetic approach[J]. ACS Omega, 2020, 5(9): 4370-4379. |
48 | Flores I, Etxeberria A, Irusta L, et al. PET-ran-PLA partially degradable random copolymers prepared by organocatalysis: effect of poly(L-lactic acid) incorporation on crystallization and morphology[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8647-8659. |
107 | Roy S, Maji P K, Goh K L. Sustainable design of flexible 3D aerogel from waste PET bottle for wastewater treatment to energy harvesting device[J]. Chemical Engineering Journal, 2021, 413: 127409. |
108 | Efimov M N, Vasilev A A, Muratov D G, et al. Conversion of polyethylene terephthalate waste in the presence of cobalt compound into highly-porous metal-carbon nanocomposite (c-PET-Co)[J]. Composites Communications, 2022, 33: 101200. |
109 | 胡延庆, 胡凡, 周剑池, 等. 废弃塑料回收与转化的研究进展[J]. 中国塑料, 2024, 38(4): 79-87. |
Hu Y Q, Hu F, Zhou J C, et al. Research progress in upcycling of waste plastics[J]. China Plastics, 2024, 38(4): 79-87. | |
110 | Liu Z H, Liu S J, Zhang H M, et al. Chemical recycling of post-consumer PET into high-performance polymer aerogels[J]. Journal of Materials Chemistry A, 2024, 12(16): 9454-9461. |
49 | Zhou J L, Zhu Q Q, Pan W N, et al. Thermal stability of bio-based aliphatic-semiaromatic copolyester for melt-spun fibers with excellent mechanical properties[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000498. |
50 | 尚小愉, 朱坚, 王滢, 等. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(7): 1-9. |
Shang X Y, Zhu J, Wang Y, et al. Synthesis and solid-state polymerization of flame retardant copolyester containing phosphorus side groups[J]. Journal of Textile Research, 2023, 44(7): 1-9. | |
51 | Zhang H J, Fang T X, Yao X X, et al. Catalytic amounts of an antibacterial monomer enable the upcycling of poly(ethylene terephthalate) waste[J]. Advanced Materials, 2023, 35(20): 2210758. |
52 | Fan L X, Chen L, Zhang H Y, et al. Dual photo-responsive diphenylacetylene enables PET in situ upcycling with reverse enhanced UV-resistance and strength[J]. Angewandte Chemie International Edition, 2023, 62(52): e202314448. |
53 | Rorrer N A, Nicholson S, Carpenter A, et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling[J]. Joule, 2019, 3(4): 1006-1027. |
54 | Fang T X, Jiang W P, Zheng T F, et al. Catalyst- and solvent-free upcycling of poly(ethylene terephthalate) waste to biodegradable plastics[J]. Advanced Materials, 2024, 36(46): 2403728. |
55 | Wei X, Zheng W Z, Chen X F, et al. Chemical upcycling of poly(ethylene terephthalate) with binary mixed alcohols toward value-added copolyester by depolymerization and repolymerization strategy[J]. Chemical Engineering Science, 2024, 294: 120103. |
56 | 邓维. 可纺型PET/PEG嵌段共聚酯的合成与性能研究[D]. 杭州: 浙江大学, 2023. |
Deng W. Study on synthesis and properties of spinnable PET/PEG block co-polyesters[D]. Hangzhou: Zhejiang University, 2023. | |
57 | Karanastasis A A, Safin V, Pitet L M. Bio-based upcycling of poly(ethylene terephthalate) waste for the preparation of high-performance thermoplastic copolyesters[J]. Macromolecules, 2022, 55(3): 1042-1049. |
58 | Benvenuta Tapia J J, Tenorio-López J A, Martínez-Estrada A, et al. Application of RAFT-synthesized reactive tri-block copolymers for the recycling of post-consumer R-PET by melt processing[J]. Materials Chemistry and Physics, 2019, 229: 474-481. |
59 | Yang J Q, Li Z L, Xu Q Y, et al. Towards carbon neutrality: sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways[J]. Eco-Environment & Health, 2024, 3(2): 117-130. |
[1] | Fei CHANG, Renbo SHI, Shihua LIU, Wenqian GAO, Yifei WANG, Bin ZHENG, Yixuan JIAO, Xingying LAN, Chunming XU, Yehua HAN. Product life cycle carbon footprint evaluation for petrochemical industry [J]. CIESC Journal, 2025, 76(2): 419-437. |
[2] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[3] | Yanping JIA, Yanju MA, Wenxin GUAN, Bin YANG, Jian ZHANG, Lanhe ZHANG. Process conditions optimization and degradation mechanism of dye wastewater by Fe0/H2O2 system using response surface methodology [J]. CIESC Journal, 2025, 76(1): 348-362. |
[4] | Bochao ZHAO, Yifan NIE, Xueting WANG, Xiangqin TIAN, Yi TIAN, Cenxuan PAN. Effects of different liquid production processes on manganese leaching and recovery and migration of calcium, magnesium and iron in manganese ore [J]. CIESC Journal, 2024, 75(S1): 292-299. |
[5] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[6] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
[7] | Xiaoyuan ZHENG, Yanlin CAI, Zhi YING, Bo WANG, Binlin DOU. Phosphorus transformation during subcritical hydrothermal conversion of sewage sludge [J]. CIESC Journal, 2024, 75(8): 2970-2982. |
[8] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
[9] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[10] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[11] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
[12] | Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials [J]. CIESC Journal, 2024, 75(2): 706-714. |
[13] | Lingjie WANG, Hailong GAO, Jipeng JIN, Zhihao WANG, Jianbo LI. Influence of pollutants in seawater on performance of reverse electrodialysis stacks [J]. CIESC Journal, 2024, 75(2): 695-705. |
[14] | Yun WU, Haifeng GONG. Carbonyl iron loaded TiO2 photocatalyst by hydrophobic modification for degradation of petroleum hydrocarbon pollutants in water [J]. CIESC Journal, 2024, 75(12): 4555-4562. |
[15] | Chengzhi HU, Guoxian WANG, Weijian TANG, Afei LI, Zhangxian CHEN, Zeheng YANG, Weixin ZHANG. Research progress on surface coating modification of nickel-rich cathode materials for high energy density lithium-ion battery [J]. CIESC Journal, 2024, 75(11): 4020-4036. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||