CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 755-768.DOI: 10.11949/0438-1157.20241088
• Process system engineering • Previous Articles Next Articles
Gonghan GUO1(), Huidian DING2(
), Qiang LI2, Shengkun JIA3(
), Xing QIAN1(
), Yang YUAN1, Haisheng CHEN1, Yiqing LUO3
Received:
2024-09-27
Revised:
2024-11-04
Online:
2025-03-10
Published:
2025-03-25
Contact:
Shengkun JIA, Xing QIAN
郭恭涵1(), 丁晖殿2(
), 李强2, 贾胜坤3(
), 钱行1(
), 苑杨1, 陈海胜1, 罗祎青3
通讯作者:
贾胜坤,钱行
作者简介:
郭恭涵(1999—),男,硕士研究生,2022210478@buct.edu.cn基金资助:
CLC Number:
Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process[J]. CIESC Journal, 2025, 76(2): 755-768.
郭恭涵, 丁晖殿, 李强, 贾胜坤, 钱行, 苑杨, 陈海胜, 罗祎青. 间歇精馏操作过程的动态贝叶斯优化方法[J]. 化工学报, 2025, 76(2): 755-768.
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.3 | 40 | 操纵回流量控制回流罐中杂质浓度 |
CClow | 2.5 | 30 | 操纵再沸器热负荷控制 |
Table 1 Parameters and functions of the concentration controllers in MVBDC
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.3 | 40 | 操纵回流量控制回流罐中杂质浓度 |
CClow | 2.5 | 30 | 操纵再沸器热负荷控制 |
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.1 | 30 | 操纵回流量控制回流罐中杂质浓度 |
CCmid | 1.5 | 10 | 操纵液相分配比控制S1中杂质浓度 |
CClow | 42.0 | 22 | 操纵再沸器热负荷Q2控制塔釜杂质浓度 |
Table 2 Parameters and functions of the concentration controllers in DWBDC
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.1 | 30 | 操纵回流量控制回流罐中杂质浓度 |
CCmid | 1.5 | 10 | 操纵液相分配比控制S1中杂质浓度 |
CClow | 42.0 | 22 | 操纵再沸器热负荷Q2控制塔釜杂质浓度 |
项目 | 价格 |
---|---|
BTX混合物原料 | 63.61 USD/kmol |
苯 | 78.125 USD/kmol |
甲苯 | 82.58 USD/kmol |
邻二甲苯 | 93.36 USD/kmol |
冷却水(25~30℃) | 0.354 USD/GJ |
低压蒸汽(5 bar,160℃) | 13.28 USD/GJ |
中压蒸汽(10 bar,184℃) | 14.19 USD/GJ |
高压蒸汽(41 bar,254℃) | 17.7 USD/GJ |
Table 3 Feed, products and utility prices
项目 | 价格 |
---|---|
BTX混合物原料 | 63.61 USD/kmol |
苯 | 78.125 USD/kmol |
甲苯 | 82.58 USD/kmol |
邻二甲苯 | 93.36 USD/kmol |
冷却水(25~30℃) | 0.354 USD/GJ |
低压蒸汽(5 bar,160℃) | 13.28 USD/GJ |
中压蒸汽(10 bar,184℃) | 14.19 USD/GJ |
高压蒸汽(41 bar,254℃) | 17.7 USD/GJ |
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 变量范围 | 优化变量 | 变量范围 | 优化变量 | 变量范围 |
收集B阶段的回流比R0 | 1.5~4.0 | 塔顶回流量初值F0/(kg/h) | 9500~13500 | 塔顶回流量初值F0/(kg/h) | 10000~16000 |
收集B阶段增大后的回流比R1 | 6~8 | 25~55 | 液相分配比初值βl | 0.45~0.90 | |
BT切割阶段的回流比R2 | 2~6 | 再沸器热负荷Q/(GJ/h) | 2~7 | Section1热负荷Q1/(GJ/h) | 3.8~5.0 |
切换到收集T阶段的临界浓度xT | 0.91~0.98 | Section3热负荷初值Q2/(GJ/h) | 0~3.5 | ||
收集T阶段的回流比R3 | 1~5 | ||||
收集T阶段增大后的回流比R4 | 6~9 | ||||
TX切割阶段的回流比R5 | 4~8 | ||||
再沸器热负荷Q/(GJ/h) | 4.0~7.5 |
Table 4 Optimization variables and ranges
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 变量范围 | 优化变量 | 变量范围 | 优化变量 | 变量范围 |
收集B阶段的回流比R0 | 1.5~4.0 | 塔顶回流量初值F0/(kg/h) | 9500~13500 | 塔顶回流量初值F0/(kg/h) | 10000~16000 |
收集B阶段增大后的回流比R1 | 6~8 | 25~55 | 液相分配比初值βl | 0.45~0.90 | |
BT切割阶段的回流比R2 | 2~6 | 再沸器热负荷Q/(GJ/h) | 2~7 | Section1热负荷Q1/(GJ/h) | 3.8~5.0 |
切换到收集T阶段的临界浓度xT | 0.91~0.98 | Section3热负荷初值Q2/(GJ/h) | 0~3.5 | ||
收集T阶段的回流比R3 | 1~5 | ||||
收集T阶段增大后的回流比R4 | 6~9 | ||||
TX切割阶段的回流比R5 | 4~8 | ||||
再沸器热负荷Q/(GJ/h) | 4.0~7.5 |
参数 | 第一次迭代 | 最后一次迭代 |
---|---|---|
F0/(kg/h) | 13114.061 | 13195.633 |
βl | 0.613 | 0.569 |
Q1/(GJ/h) | 3.963 | 4.478 |
Q2/(GJ/h) | 1.111 | 1.830 |
利润函数预测值/(USD/h) | 411.765 | 1108.945 |
利润函数实际值/(USD/h) | 813.404 | 1068.874 |
样本点数量 | 40 | 120 |
Table 5 The predicted values of the surrogate model at the newly added points
参数 | 第一次迭代 | 最后一次迭代 |
---|---|---|
F0/(kg/h) | 13114.061 | 13195.633 |
βl | 0.613 | 0.569 |
Q1/(GJ/h) | 3.963 | 4.478 |
Q2/(GJ/h) | 1.111 | 1.830 |
利润函数预测值/(USD/h) | 411.765 | 1108.945 |
利润函数实际值/(USD/h) | 813.404 | 1068.874 |
样本点数量 | 40 | 120 |
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 最优值 | 优化变量 | 最优值 | 优化变量 | 最优值 |
R0 | 3.047 | F0/(kg/h) | 10563.967 | F0/(kg/h) | 12209.509 |
xT | 0.924 | Vm/% | 37.418 | βl | 0.628 |
R1 | 6.983 | Q/(GJ/h) | 4.375 | Q1/(GJ/h) | 4.559 |
R2 | 5.904 | Q2/(GJ/h) | 2.857 | ||
R3 | 1.260 | ||||
R4 | 6.967 | ||||
R5 | 6.115 | ||||
Q/(GJ/h) | 7.228 |
Table 6 Optimal operational variables
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 最优值 | 优化变量 | 最优值 | 优化变量 | 最优值 |
R0 | 3.047 | F0/(kg/h) | 10563.967 | F0/(kg/h) | 12209.509 |
xT | 0.924 | Vm/% | 37.418 | βl | 0.628 |
R1 | 6.983 | Q/(GJ/h) | 4.375 | Q1/(GJ/h) | 4.559 |
R2 | 5.904 | Q2/(GJ/h) | 2.857 | ||
R3 | 1.260 | ||||
R4 | 6.967 | ||||
R5 | 6.115 | ||||
Q/(GJ/h) | 7.228 |
参数 | BDC | MVBDC | DWBDC |
---|---|---|---|
B收集量/kmol | 228.014 | 257.005 | 234.650 |
T收集量/kmol | 200.483 | 227.173 | 228.736 |
X收集量/kmol | 304.848 | 313.915 | 325.188 |
B纯度/%(摩尔分数) | 99.00 | 99.03 | 99.08 |
T纯度/%(摩尔分数) | 99.00 | 99.00 | 99.11 |
X纯度/%(摩尔分数) | 99.00 | 99.20 | 99.00 |
总能耗/GJ | 317.926 | 133.050 | 166.992 |
冷热工程总费用/USD | 2190.663 | 9905.187 | 1202.905 |
产品收益/USD | 62823.928 | 68145.549 | 67580.544 |
总时间/h | 20.78 | 16.44 | 13.74 |
利润函数/(USD/h) | 484.149 | 967.163 | 1101.085 |
Table 7 Optimal results of batch distillation
参数 | BDC | MVBDC | DWBDC |
---|---|---|---|
B收集量/kmol | 228.014 | 257.005 | 234.650 |
T收集量/kmol | 200.483 | 227.173 | 228.736 |
X收集量/kmol | 304.848 | 313.915 | 325.188 |
B纯度/%(摩尔分数) | 99.00 | 99.03 | 99.08 |
T纯度/%(摩尔分数) | 99.00 | 99.00 | 99.11 |
X纯度/%(摩尔分数) | 99.00 | 99.20 | 99.00 |
总能耗/GJ | 317.926 | 133.050 | 166.992 |
冷热工程总费用/USD | 2190.663 | 9905.187 | 1202.905 |
产品收益/USD | 62823.928 | 68145.549 | 67580.544 |
总时间/h | 20.78 | 16.44 | 13.74 |
利润函数/(USD/h) | 484.149 | 967.163 | 1101.085 |
项目 | BDC | MVBDC | DWBDC |
---|---|---|---|
原料量/kmol | 795.031 | 806.323 | 805.671 |
B摩尔分数/% | 30.94 | 31.99 | 29.30 |
T摩尔分数/% | 29.62 | 29.17 | 30.43 |
X摩尔分数/% | 39.45 | 38.84 | 40.28 |
Table 8 Feed rates of three types of batch distillation
项目 | BDC | MVBDC | DWBDC |
---|---|---|---|
原料量/kmol | 795.031 | 806.323 | 805.671 |
B摩尔分数/% | 30.94 | 31.99 | 29.30 |
T摩尔分数/% | 29.62 | 29.17 | 30.43 |
X摩尔分数/% | 39.45 | 38.84 | 40.28 |
1 | Górak A A S. Distillation: Fundamentals and Principles[M]. Burlington: Elsevier Science, 2014. |
2 | Robinson C S, Gilliland E R. Elements of Fractional Distillation[M]. 4th ed. New York: McGraw-Hill, 1950. |
3 | Lotter S P, Diwekar U M. Shortcut models and feasibility considerations for emerging batch distillation columns[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 760-770. |
4 | Barolo M, Guarise G B, Rienzi S A, et al. Understanding the dynamics of a batch distillation column with a middle vessel[J]. Computers & Chemical Engineering, 1998, 22: S37-S44. |
5 | Sørense E, Skogestad S. Comparison of regular and inverted batch distillation[J]. Chemical Engineering Science, 1996, 51(22): 4949-4962. |
6 | Wittgens B, Skogestad S. Closed operation of multivessel batch distillation: experimental verification[J]. AIChE Journal, 2000, 46(6): 1209-1217. |
7 | Luyben W L. Aspen dynamics simulation of a middle-vessel batch distillation process[J]. Journal of Process Control, 2015, 33: 49-59. |
8 | Lopez-Saucedo E S, Grossmann I E, Segovia-Hernandez J G, et al. Rigorous modeling, simulation and optimization of a conventional and nonconventional batch reactive distillation column: a comparative study of dynamic optimization approaches[J]. Chemical Engineering Research and Design, 2016, 111: 83-99. |
9 | Diwekar U, Agrawal R. Novel use of dividing wall columns for intensification multicomponent batch distillations[J]. Chemical Engineering and Processing - Process Intensification, 2021, 164: 108400. |
10 | Furlonge H I, Pantelides C C, Sørensen E. Optimal operation of multivessel batch distillation columns[J]. AIChE Journal, 1999, 45(4): 781-801. |
11 | Farhat S, Czernicki M, Pibouleau L, et al. Optimization of multiple-fraction batch distillation by nonlinear programming[J]. AIChE Journal, 1990, 36(9): 1349-1360. |
12 | Jain S, Kim J K, Smith R. Operational optimization of batch distillation systems[J]. Industrial & Engineering Chemistry Research, 2012, 51(16): 5749-5761. |
13 | Safdarnejad S M, Gallacher J R, Hedengren J D. Dynamic parameter estimation and optimization for batch distillation[J]. Computers & Chemical Engineering, 2016, 86: 18-32. |
14 | Quirante N, Caballero J A. Large scale optimization of a sour water stripping plant using surrogate models[J]. Computers & Chemical Engineering, 2016, 92: 143-162. |
15 | Wang H H, Wang Z B, Zhou Q, et al. Optimization and sliding mode control of dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 20102-20111. |
16 | Qian X, Jia S K, Huang K J, et al. Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods[J]. Journal of Cleaner Production, 2020, 273: 123041. |
17 | Barreto A A, Rodriguez-Donis I, Gerbaud V, et al. Optimization of heterogeneous batch extractive distillation[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5204-5217. |
18 | Cheng J K, Lee H Y, Huang H P, et al. Optimal steady-state design of reactive distillation processes using simulated annealing[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(2): 188-196. |
19 | Hanke M, Li P. Simulated annealing for the optimization of batch distillation processes[J]. Computers & Chemical Engineering, 2000, 24(1): 1-8. |
20 | Chen P, Merrick B M, Brazil T J. Bayesian optimization for broadband high-efficiency power amplifier designs[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4263-4272. |
21 | Huan X, Marzouk Y M. Simulation-based optimal Bayesian experimental design for nonlinear systems[J]. Journal of Computational Physics, 2013, 232(1): 288-317. |
22 | Ragueneau Q, Laurent L, Legay A, et al. A constrained Bayesian optimization framework for structural vibrations with local nonlinearities[J]. Structural and Multidisciplinary Optimization, 2024, 67(4): 47. |
23 | Liang M K, Song J Y, Zhao K F, et al. Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm[J]. Computers & Chemical Engineering, 2022, 166: 107978. |
24 | Wang K, Dowling A W. Bayesian optimization for chemical products and functional materials[J]. Current Opinion in Chemical Engineering, 2022, 36: 100728. |
25 | Kerkhof L H J, Vissers H J M. On the profit of optimum control in batch distillation[J]. Chemical Engineering Science, 1978, 33(7): 961-970. |
26 | Diwekar U, Rivier C. Missing components in multicomponent batch distillation and optimal control[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17455-17461. |
27 | Yadav G, Singh A, Dutta A, et al. Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste[J]. Energy & Environmental Science, 2023, 16(9): 3638-3653. |
28 | Pérez-Uresti S I, Adrián-Mendiola J M, El-Halwagi M M, et al. Techno-economic assessment of benzene production from shale gas[J]. Processes, 2017, 5(3): 33. |
29 | Mevawala C, Bai X W, Hu J L, et al. Plant-wide modeling and techno-economic analysis of a direct non-oxidative methane dehydroaromatization process via conventional and microwave-assisted catalysis[J]. Applied Energy, 2023, 336: 120795. |
30 | Khosravi-Nikou M, Shahmoradi A, Shariati A, et al. Experimental and techno-economic investigation of industrial para-xylene plant revamping to produce meta-xylene[J]. Scientific Reports, 2023, 13(1): 12534. |
31 | Qian X, Huang K J, Chen H S, et al. Intensifying Kaibel dividing-wall column via vapor recompression heat pump[J]. Chemical Engineering Research and Design, 2019, 142: 195-203. |
32 | 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090. |
Cui J X, Yang B. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090. | |
33 | 赵克凡, 贾胜坤, 罗祎青, 等. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341. |
Zhao K F, Jia S K, Luo Y Q, et al. Optimal design for dividing wall column using online Kriging surrogate model-based optimization method[J]. CIESC Journal, 2022, 73(1): 332-341. | |
34 | Kalagnanam J R, Diwekar U M. An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39(3): 308-319. |
35 | Gramacy R B. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences[M]. Boca Raton, FL: CRC Press, 2020. |
36 | Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. |
37 | Archetti F, Candelieri A. Bayesian Optimization and Data Science[M]. Cham: Springer, 2019. |
38 | Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. |
39 | Jones D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. |
40 | Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerosapce Sciences, 2009, 45(1/2/3): 50-79. |
41 | Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
[1] | Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate [J]. CIESC Journal, 2025, 76(2): 584-595. |
[2] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
[3] | Linrui YANG, Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU. Process design and energy saving for benzene/cyclohexane/cyclohexene extractive distillation process [J]. CIESC Journal, 2025, 76(2): 731-743. |
[4] | Ju DONG, Liuyang YU, Shengzhe JIA, Lianjun SHI, Shihan WANG, Guotao HU, Weiwei TANG, Jingkang WANG, Junbo GONG. Current status and research progress of crystallization technology of electronic grade phosphoric acid [J]. CIESC Journal, 2025, 76(2): 438-453. |
[5] | Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations [J]. CIESC Journal, 2025, 76(2): 564-575. |
[6] | Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method [J]. CIESC Journal, 2025, 76(1): 256-265. |
[7] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
[8] | Junjie ZHANG, Yuan CHEN, Yuntang LI, Xiaolu LI, Bingqing WANG, Xudong PENG. Analysis and optimization of dynamic performance of super-elliptical hole floating seal dam compliant foil face gas seal [J]. CIESC Journal, 2025, 76(1): 296-310. |
[9] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[10] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[11] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[12] | Yiqun LIU, Chao WANG, Chunxi LU. Relationship between simple distillation and equilibrium distillation in binary system [J]. CIESC Journal, 2024, 75(5): 1912-1919. |
[13] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[14] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[15] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||