CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3286-3294.DOI: 10.11949/0438-1157.20241408
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xuyang LU(
), Qiang XU(
), Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO(
)
Received:2024-12-04
Revised:2025-04-10
Online:2025-08-13
Published:2025-07-25
Contact:
Qiang XU, Liejin GUO
卢煦旸(
), 徐强(
), 康浩鹏, 史健, 曹泽水, 郭烈锦(
)
通讯作者:
徐强,郭烈锦
作者简介:卢煦旸(1996—),男,博士研究生,luxjtu@163.com
基金资助:CLC Number:
Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems[J]. CIESC Journal, 2025, 76(7): 3286-3294.
卢煦旸, 徐强, 康浩鹏, 史健, 曹泽水, 郭烈锦. 化学链制氢系统中磁铁矿氧载体的CO还原特性研究[J]. 化工学报, 2025, 76(7): 3286-3294.
Add to citation manager EndNote|Ris|BibTeX
| No. | Kinetic model | f(α) | g(α) |
|---|---|---|---|
| 1 | one-dimensional diffusion | 1/(2α) | α2 |
| 2 | two-dimensional diffusion | -[1/ln(1-α)] | (1-α)ln(1-α)+α |
| 3 | 3D-diffusion (Jander equation) | (3/2)(1-α)2/3(1-(1-α)1/3)-1 | (1-(1-α)1/3)2 |
| 4 | Avrami-Erofe’ev | (3/2) (1-α)(-ln(1-α))1/3 | (-ln(1-α))2/3 |
| 5 | Avrami-Erofe’ev | 2(1-α)(-ln(1-α))1/2 | (-ln(1-α))1/2 |
| 6 | Avrami-Erofe’ev | 3(1-α)(-ln(1-α))2/3 | (-ln(1-α))1/3 |
| 7 | contracting cylinder | 2(1-α)1/2 | 1-(1-α)1/2 |
| 8 | contracting sphere | 3(1-α)2/3 | 1-(1-α)1/3 |
| 9 | first-order | 1-α | -ln(1-α) |
| 10 | second-order | (1-α)2 | (1-α)-1-1 |
Table 1 Common kinetic models
| No. | Kinetic model | f(α) | g(α) |
|---|---|---|---|
| 1 | one-dimensional diffusion | 1/(2α) | α2 |
| 2 | two-dimensional diffusion | -[1/ln(1-α)] | (1-α)ln(1-α)+α |
| 3 | 3D-diffusion (Jander equation) | (3/2)(1-α)2/3(1-(1-α)1/3)-1 | (1-(1-α)1/3)2 |
| 4 | Avrami-Erofe’ev | (3/2) (1-α)(-ln(1-α))1/3 | (-ln(1-α))2/3 |
| 5 | Avrami-Erofe’ev | 2(1-α)(-ln(1-α))1/2 | (-ln(1-α))1/2 |
| 6 | Avrami-Erofe’ev | 3(1-α)(-ln(1-α))2/3 | (-ln(1-α))1/3 |
| 7 | contracting cylinder | 2(1-α)1/2 | 1-(1-α)1/2 |
| 8 | contracting sphere | 3(1-α)2/3 | 1-(1-α)1/3 |
| 9 | first-order | 1-α | -ln(1-α) |
| 10 | second-order | (1-α)2 | (1-α)-1-1 |
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 650 | 0.1674 | 0.007 |
| 700 | 0.2083 | 0.009 | |
| 750 | 0.2831 | 0.013 | |
| a2 | 650 | 0.1164 | 0.005 |
| 700 | 0.0872 | 0.002 | |
| 750 | 0.0820 | 0.003 | |
| n1 | 650 | 0.9081 | 0.027 |
| 700 | 1.1132 | 0.040 | |
| 750 | 1.1257 | 0.052 | |
| n2 | 650 | 0.5120 | 0.009 |
| 700 | 0.6398 | 0.008 | |
| 750 | 0.7077 | 0.011 |
Table 2 JMA fitting parameters a1,a2 and n1,n2
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 650 | 0.1674 | 0.007 |
| 700 | 0.2083 | 0.009 | |
| 750 | 0.2831 | 0.013 | |
| a2 | 650 | 0.1164 | 0.005 |
| 700 | 0.0872 | 0.002 | |
| 750 | 0.0820 | 0.003 | |
| n1 | 650 | 0.9081 | 0.027 |
| 700 | 1.1132 | 0.040 | |
| 750 | 1.1257 | 0.052 | |
| n2 | 650 | 0.5120 | 0.009 |
| 700 | 0.6398 | 0.008 | |
| 750 | 0.7077 | 0.011 |
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 800 | 0.4351 | 0.020 |
| 850 | 0.4610 | 0.014 | |
| 900 | 0.6107 | 0.013 | |
| a2 | 800 | 0.1006 | 0.002 |
| 850 | 0.1262 | 0.002 | |
| 900 | 0.1180 | 0.001 | |
| n1 | 800 | 2.6962 | 0.138 |
| 850 | 3.0448 | 0.109 | |
| 900 | 3.2218 | 0.097 | |
| n2 | 800 | 0.7582 | 0.007 |
| 850 | 0.7761 | 0.006 | |
| 900 | 0.9502 | 0.005 |
Table 3 JMA fitting parameters a1,a2 and n1,n2
| 参数 | 反应温度/℃ | 参数数值 | 标准差 |
|---|---|---|---|
| a1 | 800 | 0.4351 | 0.020 |
| 850 | 0.4610 | 0.014 | |
| 900 | 0.6107 | 0.013 | |
| a2 | 800 | 0.1006 | 0.002 |
| 850 | 0.1262 | 0.002 | |
| 900 | 0.1180 | 0.001 | |
| n1 | 800 | 2.6962 | 0.138 |
| 850 | 3.0448 | 0.109 | |
| 900 | 3.2218 | 0.097 | |
| n2 | 800 | 0.7582 | 0.007 |
| 850 | 0.7761 | 0.006 | |
| 900 | 0.9502 | 0.005 |
| 温度/℃ | CO浓度/% | 反应步骤 | 反应机制 | E/(kJ/mol) | 文献 |
|---|---|---|---|---|---|
| 750~950 | 40 | Fe3O4→FeO | chemical reaction | 52.44 | [ |
| FeO→Fe | chemical reaction | 45.74 | |||
| 600~800 | 60 | Fe3O4→FeO | phase boundary | 35.01 | [ |
| 600~720 | FeO→Fe | phase boundary and gas diffusion | 42.83 | ||
| 760~800 | FeO→Fe | NA | 14.27 | ||
| 750~900 | 10~50 | Fe3O4→FeO | contracting cylinder | 54.93 | [ |
| FeO→Fe | first-order | 45.8 | |||
| 700~850 | 50 | Fe3O4→FeO | second-order | 40.92 | [ |
| FeO→Fe | first-order | 60.87 | |||
| 650~750 | 20 | Fe3O4→FeO | chemical reaction | 66.84 | 本文 |
| FeO→Fe | gas diffusion | 52.48 | |||
| 800~900 | 20 | Fe3O4→FeO | nucleation and growth | 16.21 | |
| FeO→Fe | gas diffusion | 81.52 |
Table 4 The kinetic results of the two-step reactions of Fe3O4→FeO and FeO→Fe in the literature
| 温度/℃ | CO浓度/% | 反应步骤 | 反应机制 | E/(kJ/mol) | 文献 |
|---|---|---|---|---|---|
| 750~950 | 40 | Fe3O4→FeO | chemical reaction | 52.44 | [ |
| FeO→Fe | chemical reaction | 45.74 | |||
| 600~800 | 60 | Fe3O4→FeO | phase boundary | 35.01 | [ |
| 600~720 | FeO→Fe | phase boundary and gas diffusion | 42.83 | ||
| 760~800 | FeO→Fe | NA | 14.27 | ||
| 750~900 | 10~50 | Fe3O4→FeO | contracting cylinder | 54.93 | [ |
| FeO→Fe | first-order | 45.8 | |||
| 700~850 | 50 | Fe3O4→FeO | second-order | 40.92 | [ |
| FeO→Fe | first-order | 60.87 | |||
| 650~750 | 20 | Fe3O4→FeO | chemical reaction | 66.84 | 本文 |
| FeO→Fe | gas diffusion | 52.48 | |||
| 800~900 | 20 | Fe3O4→FeO | nucleation and growth | 16.21 | |
| FeO→Fe | gas diffusion | 81.52 |
| [1] | Sun M M, Pang K L, Barati M, et al. Hydrogen-based reduction technologies in low-carbon sustainable ironmaking and steelmaking: a review[J]. Journal of Sustainable Metallurgy, 2024, 10(1): 10-25. |
| [2] | Hou B L, Zhang H Y, Li H Z, et al. Study on kinetics of iron oxide reduction by hydrogen[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 10-17. |
| [3] | 冯相昭, 黄晓丹, 李欢, 等. “双碳”背景下氢冶金发展面临的机遇、挑战及对策建议[J]. 可持续发展经济导刊, 2024(S1): 45-49. |
| Feng X Z, Huang X D, Li H, et al. Opportunities, challenges and countermeasures for the development of hydrogen metallurgy in the context of carbon peak and carbon neutrality[J]. China Sustainability Tribune, 2024(S1): 45-49. | |
| [4] | Monazam E R, Breault R W, Siriwardane R. Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion[J]. Chemical Engineering Journal, 2014, 242: 204-210. |
| [5] | Oh J, Noh D. The reduction kinetics of hematite particles in H2 and CO atmospheres[J]. Fuel, 2017, 196: 144-153. |
| [6] | Go K S, Son S R, Kim S D. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(21): 5986-5995. |
| [7] | Morey C, Tang Q M, Sun S C, et al. A kinetic study on H2 reduction of Fe3O4 for long-duration energy-storage-compatible solid oxide iron air batteries[J]. Journal of the Electrochemical Society, 2023, 170(10): 104504. |
| [8] | Wen F, Wang H, Tang Z X. Kinetic study of the redox process of iron oxide for hydrogen production at oxidation step[J]. Thermochimica Acta, 2011, 520(1/2): 55-60. |
| [9] | Yu Z L, Yang Y Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34. |
| [10] | Lougou B G, Hong J R, Shuai Y, et al. Production mechanism analysis of H2 and CO via solar thermochemical cycles based on iron oxide (Fe3O4) at high temperature[J]. Solar Energy, 2017, 148: 117-127. |
| [11] | Chen S Y, Xue Z P, Wang D, et al. Hydrogen and electricity co-production plant integrating steam-iron process and chemical looping combustion[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8204-8216. |
| [12] | Kuila S K, Chaudhuri S, Chatterjee R, et al. Reduction of magnetite ore fines with hydrogen[C]//Proceedings of 4th International Conference on Chemical Engineering. Dhaka,Bangladesh, 2014. |
| [13] | Kuila S K, Chatterjee R, Ghosh D. Kinetics of hydrogen reduction of magnetite ore fines[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9256-9266. |
| [14] | Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2(part Ⅰ): Low temperature reduction of hematite[J]. Thermochimica Acta, 2006, 447(1): 89-100. |
| [15] | Chen H S, Zheng Z, Chen Z W, et al. Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: a multistep kinetics study[J]. Powder Technology, 2017, 316: 410-420. |
| [16] | He K, Zheng Z, Chen Z W. Multistep reduction kinetics of Fe3O4 to Fe with CO in a micro fluidized bed reaction analyzer[J]. Powder Technology, 2020, 360: 1227-1236. |
| [17] | Wang H M, Liu B J, Yang G Y, et al. Multistep kinetic study of Fe2O3 reduction by H2 based on isothermal thermogravimetric analysis data deconvolution[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16601-16613. |
| [18] | Wagner D, Devisme O, Patisson F, et al. A laboratory study of the reduction of iron oxides by hydrogen[C]//Sohn International Symposium on Advanced Processing of Metals and Materials. San Diego, 2006. |
| [19] | Dilmaç N. Isothermal and non-isothermal reduction kinetics of iron ore oxygen carrier by CO: modelistic and model-free approaches[J]. Fuel, 2021, 296: 120707. |
| [20] | Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures(Ⅰ): Matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7(6): 519-525. |
| [21] | Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Applied Catalysis A: General, 2007, 326(1): 17-27. |
| [22] | Vyazovkin S, Burnham A K, Favergeon L, et al. ICTAC kinetics committee recommendations for analysis of multi-step kinetics[J]. Thermochimica Acta, 2020, 689: 178597. |
| [23] | Spreitzer D, Schenk J. Reduction of iron oxides with hydrogen: a review[J]. Steel Research International, 2019, 90(10): 1900108. |
| [24] | Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses[J]. Thermochimica Acta, 1995, 267: 61-73. |
| [25] | Abolpour B, Afsahi M M, Azizkarimi M. Reduction kinetics of magnetite concentrate particles by carbon monoxide[J]. Mineral Processing and Extractive Metallurgy, 2018, 127(1): 29-39. |
| [26] | Chen H S, Zheng Z, Shi W Y. Investigation on the kinetics of iron ore fines reduction by CO in a micro-fluidized bed[J]. Procedia Engineering, 2015, 102: 1726-1735. |
| [27] | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
| [28] | Lu X Y, Xu Q, Kang H P, et al. Multistep kinetic study of magnetite reduction by hydrogen based on thermogravimetric analysis[J]. International Journal of Hydrogen Energy, 2024, 73: 695-707. |
| [29] | Spreitzer D, Schenk J. Iron ore reduction by hydrogen using a laboratory scale fluidized bed reactor: kinetic investigation—experimental setup and method for determination[J]. Metallurgical and Materials Transactions B, 2019, 50(5): 2471-2484. |
| [30] | Piotrowski K, Mondal K, Wiltowski T, et al. Topochemical approach of kinetics of the reduction of hematite to wüstite[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 73-82. |
| [1] | Zhongyi LIU, Bin HU, Ruzhu WANG, Yun ZHAO, Ziwen CAI, Yunfeng LI. Electrification potential and heating system analysis in brewing industry [J]. CIESC Journal, 2025, 76(S1): 401-408. |
| [2] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [3] | Junyi WANG, Zhangxun XIA, Fenning JING, Suli WANG. Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels [J]. CIESC Journal, 2025, 76(7): 3509-3520. |
| [4] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [5] | Jiashun LI, Wang LI, Zuzeng QIN, Tongming SU, Xinling XIE, Hongbing JI. Preparation of polyimide-reinforced lignocellulosic nanofibril aerogel and its oil-water separation performance [J]. CIESC Journal, 2025, 76(5): 2169-2185. |
| [6] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| [7] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
| [8] | Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating [J]. CIESC Journal, 2025, 76(2): 787-796. |
| [9] | Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3 [J]. CIESC Journal, 2025, 76(2): 645-653. |
| [10] | Yifei LI, Yanfei SU, Tian YIN, Haoqiang JIANG, Zhiming XU, Linzhou ZHANG, Quan SHI, Chunming XU. Molecular composition and structure characterization of coal liquefaction product oil based on GC×GC-TOF MS [J]. CIESC Journal, 2025, 76(2): 543-553. |
| [11] | Yuxuan WU, Cheng CHANG, Xueping GU, Lianfang FENG, Cailiang ZHANG. Modeling of butadiene emulsion polymerization process for stereoisomerization [J]. CIESC Journal, 2025, 76(2): 879-887. |
| [12] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
| [13] | Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster [J]. CIESC Journal, 2025, 76(1): 363-373. |
| [14] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
| [15] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||