CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4205-4216.DOI: 10.11949/0438-1157.20250053
• Biochemical engineering and technology • Previous Articles Next Articles
Xiaochen ZHANG1(
), Zhongshan LU1, Teng GUO1, Heng GUI2, Hongbing SONG1, Meng XIAO1(
)
Received:2025-01-13
Revised:2025-04-14
Online:2025-09-17
Published:2025-08-25
Contact:
Meng XIAO
张晓晨1(
), 鲁中山1, 郭腾1, 桂恒2, 宋红兵1, 肖盟1(
)
通讯作者:
肖盟
作者简介:张晓晨(1998—),女,硕士研究生,2457107890@qq.com
CLC Number:
Xiaochen ZHANG, Zhongshan LU, Teng GUO, Heng GUI, Hongbing SONG, Meng XIAO. Isolation and study of the degradation mechanism of hydroxyl-terminated polybutadiene-degrading strain[J]. CIESC Journal, 2025, 76(8): 4205-4216.
张晓晨, 鲁中山, 郭腾, 桂恒, 宋红兵, 肖盟. 一株端羟基聚丁二烯降解菌的筛选及降解机理研究[J]. 化工学报, 2025, 76(8): 4205-4216.
Add to citation manager EndNote|Ris|BibTeX
| KEGG | 基因编号 | 名称 | 基因描述 | 显著性 | 上/下调情况 |
|---|---|---|---|---|---|
| K01692 | gene2244 | paaF | crotonase/enoyl-CoA hydratase family protein | yes | up |
| K00059 | gene1731 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up |
| gene2659 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up | |
| K00249 | gene0772 | acd | acyl-CoA dehydrogenase family protein | yes | up |
| gene2751 | bcd | acyl-CoA dehydrogenase | yes | down | |
| K22552 | gene1654 | copper oxidase | yes | up | |
| K00257 | gene2983 | acd | acyl-CoA/acyl-ACP dehydrogenase | yes | up |
| K00128 | gene0641 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down |
| gene0924 | MULTISPECIES: aldehyde dehydrogenase family protein | yes | up | ||
| gene2891 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down | |
| gene4094 | mmsA | MULTISPECIES: CoA-acylating methylmalonate-semialdehyde dehydrogenase | yes | up |
Table 1 Genes involved in HTPB degradation
| KEGG | 基因编号 | 名称 | 基因描述 | 显著性 | 上/下调情况 |
|---|---|---|---|---|---|
| K01692 | gene2244 | paaF | crotonase/enoyl-CoA hydratase family protein | yes | up |
| K00059 | gene1731 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up |
| gene2659 | fabG | MULTISPECIES: 3-oxoacyl-ACP reductase FabG | yes | up | |
| K00249 | gene0772 | acd | acyl-CoA dehydrogenase family protein | yes | up |
| gene2751 | bcd | acyl-CoA dehydrogenase | yes | down | |
| K22552 | gene1654 | copper oxidase | yes | up | |
| K00257 | gene2983 | acd | acyl-CoA/acyl-ACP dehydrogenase | yes | up |
| K00128 | gene0641 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down |
| gene0924 | MULTISPECIES: aldehyde dehydrogenase family protein | yes | up | ||
| gene2891 | aldB | MULTISPECIES: aldehyde dehydrogenase | yes | down | |
| gene4094 | mmsA | MULTISPECIES: CoA-acylating methylmalonate-semialdehyde dehydrogenase | yes | up |
| 降解时间 | 组分1 | 组分2 | ||||
|---|---|---|---|---|---|---|
Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | |
| 原样 | 9523 | 22364 | 2.350 | — | — | — |
| 对照组(28d) | 9426 | 20882 | 2.220 | — | — | — |
| 5 d | 9179 | 19808 | 2.160 | 682 | 784 | 1.150 |
| 10 d | 8767 | 19406 | 2.210 | 716 | 806 | 1.330 |
| 14 d | 6932 | 16141 | 2.328 | 383 | 652 | 1.701 |
| 21 d | 6857 | 15968 | 2.329 | 394 | 648 | 1.644 |
| 28 d | 6809 | 15795 | 2.320 | 366 | 617 | 1.685 |
Table 2 Distribution of HTPB molecular mass before and after degradation
| 降解时间 | 组分1 | 组分2 | ||||
|---|---|---|---|---|---|---|
Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | Mn/ (g/mol) | Mw/ (g/mol) | 多分散性 | |
| 原样 | 9523 | 22364 | 2.350 | — | — | — |
| 对照组(28d) | 9426 | 20882 | 2.220 | — | — | — |
| 5 d | 9179 | 19808 | 2.160 | 682 | 784 | 1.150 |
| 10 d | 8767 | 19406 | 2.210 | 716 | 806 | 1.330 |
| 14 d | 6932 | 16141 | 2.328 | 383 | 652 | 1.701 |
| 21 d | 6857 | 15968 | 2.329 | 394 | 648 | 1.644 |
| 28 d | 6809 | 15795 | 2.320 | 366 | 617 | 1.685 |
| 序号 | 保留时间/min | 化学式 | 鉴定产物 |
|---|---|---|---|
| 1 | 2.518 | CH4O | 甲醇 |
| 2 | 18.079 | C17H34O2 | 棕榈酸甲酯 |
| 3 | 19.665 | C19H40O | 十九烷醇 |
| 4 | 20.019 | C19H38O2 | 硬酯酸甲酯C18 |
| 5 | 20.758 | C22H44O2 | 正二十醋酸 |
| 6 | 21.575 | C20H42 | 正二十烷 |
| 7 | 22.069 | C21H38O4 | 一亚油酸甘油酯 |
| 8 | 22.420 | C23H32O2 | 抗氧剂2246 |
| 9 | 23.990 | C36H74 | 正三十六烷 |
| 10 | 25.465 | C34H70 | 正三十四烷 |
| 11 | 26.917 | C44H90 | 四十四烷 |
Table 3 Products detected by GC-MS
| 序号 | 保留时间/min | 化学式 | 鉴定产物 |
|---|---|---|---|
| 1 | 2.518 | CH4O | 甲醇 |
| 2 | 18.079 | C17H34O2 | 棕榈酸甲酯 |
| 3 | 19.665 | C19H40O | 十九烷醇 |
| 4 | 20.019 | C19H38O2 | 硬酯酸甲酯C18 |
| 5 | 20.758 | C22H44O2 | 正二十醋酸 |
| 6 | 21.575 | C20H42 | 正二十烷 |
| 7 | 22.069 | C21H38O4 | 一亚油酸甘油酯 |
| 8 | 22.420 | C23H32O2 | 抗氧剂2246 |
| 9 | 23.990 | C36H74 | 正三十六烷 |
| 10 | 25.465 | C34H70 | 正三十四烷 |
| 11 | 26.917 | C44H90 | 四十四烷 |
| [1] | Kohga M. From cross-linking to plasticization–characterization of glycerin/HTPB blends[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 436-443. |
| [2] | Mohan Y M, Raju K M. Synthesis and characterization of HTPB-GAP cross-linked co-polymers[J]. Designed Monomers and Polymers, 2005, 8(2): 159-175. |
| [3] | Luo Y L, Miao Y, Xu F. Synthesis, phase behavior, and simulated in vitro degradation of novel HTPB-b-PEG polyurethane copolymers[J]. Macromolecular Research, 2011, 19(12): 1233-1241. |
| [4] | Medchill C, Perezselsky A A, Cortopassi A, et al. Transient plasma enhanced combustion of solid rocket propellants[J]. Aerospace Science and Technology, 2024, 148: 109107. |
| [5] | 李立远, 张丽华, 王鹏, 等. 废弃丁羟推进剂的处理与再利用研究进展[J]. 河南化工, 2010, 27(24): 3-7. |
| Li L Y, Zhang L H, Wang P, et al. Research progress on treatment and reuse of waste HTPB propellants[J]. Henan Chemical Industry, 2010, 27(24): 3-7. | |
| [6] | 鲁彦玲, 张力, 施冬梅, 等. 废弃发射药的再利用研究[J]. 环境科学与技术, 2006, 29(S1): 147-150. |
| Lu Y L, Zhang L, Shi D M, et al. Study on the reusing obsolete propellant[J]. Environmental Science & Technology, 2006, 29(S1): 147-150. | |
| [7] | Ganesh K, Sundarrajan S, Kishore K, et al. Primary pyrolysis products of hydroxy-terminated polybutadiene[J]. Macromolecules, 2000, 33(2): 326-330. |
| [8] | Williams P T. Pyrolysis of waste tyres: a review[J]. Waste Management, 2013, 33(8): 1714-1728. |
| [9] | 仪建华, 赵凤起, 李上文, 等. 美俄废弃火箭发动机装药绿色销毁与回收技术研究进展[J]. 化学推进剂与高分子材料, 2006, 4(6): 25-27, 37. |
| Yi J H, Zhao F Q, Li S W, et al. Research progress of green destruction and reclamation technology of obsolete rocket motor charge in America and Russia[J]. Chemical Propellants & Polymeric Materials, 2006, 4(6): 25-27, 37. | |
| [10] | Zhang Y, Zou M, Lodhi A F, et al. Microbial degradation and community structure analysis of hydroxyl-terminated polybutadiene (HTPB)[J]. AMB Express, 2021, 11(1): 180. |
| [11] | Wu K, Liu Y C, Ma Y, et al. Pretreatment of hydroxy-terminated polybutadiene (HTPB)/toluene diisocyanate (TDI) binder system for biodegradation[J]. Advanced Composites and Hybrid Materials, 2021, 4(1): 96-103. |
| [12] | 吴凯. 废弃丁羟推进剂黏合体系生物降解方法及机理[D]. 太原: 中北大学, 2021. |
| Wu K. Biodegradation method and mechanism of binder system waste from HTPB propellant[D]. Taiyuan: North University of China, 2021. | |
| [13] | Imai S, Ichikawa K, Muramatsu Y, et al. Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene)[J]. Enzyme and Microbial Technology, 2011, 49(6/7): 526-531. |
| [14] | Bröker D, Dietz D, Arenskötter M, et al. The genomes of the non-clearing-zone-forming and natural-rubber-degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains[J]. Applied and Environmental Microbiology, 2008, 74(8): 2288-2297. |
| [15] | Ibrahim E M A, Arenskötter M, Luftmann H, et al. Identification of poly(cis-1, 4-isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1[J]. Applied and Environmental Microbiology, 2006, 72(5): 3375-3382. |
| [16] | Roy R V, Das M, Banerjee R, et al. Comparative studies on crosslinked and uncrosslinked natural rubber biodegradation by Pseudomonas sp.[J]. Bioresource Technology, 2006, 97(18): 2485-2488. |
| [17] | Yikmis M, Arenskötter M, Rose K, et al. Secretion and transcriptional regulation of the latex-clearing protein, Lcp, by the rubber-degrading bacterium Streptomyces sp. strain K30[J]. Applied and Environmental Microbiology, 2008, 74(17): 5373-5382. |
| [18] | Rose K, Tenberge K B, Steinbüchel A. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation [J]. Biomacromolecules, 2005, 6(1): 180-188. |
| [19] | Nayanashree G, Thippeswamy B. Biodegradation of natural rubber by laccase and manganese peroxidase enzyme of Bacillus subtilis [J]. Environmental Processes, 2015, 2(4): 761-772. |
| [20] | Vivod R, Oetermann S, Hiessl S, et al. Oligo(cis-1,4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2[J]. Applied Microbiology and Biotechnology, 2017, 101(21): 7945-7960. |
| [21] | Song F, Li C, Zhang N, et al. A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota[J]. Postharvest Biology and Technology, 2023, 196: 112176. |
| [22] | Zhang N, Ding M Z, Yuan Y J. Current advances in biodegradation of polyolefins [J]. Microorganisms, 2022, 10(8): 1537. |
| [23] | Iiyoshi Y, Tsutsumi Y, Nishida T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase[J]. Journal of Wood Science, 1998, 44(3): 222-229. |
| [24] | Zhang Y, Pedersen J N, Eser B E, et al. Biodegradation of polyethylene and polystyrene: from microbial deterioration to enzyme discovery[J]. Biotechnology Advances, 2022, 60: 107991. |
| [25] | Cheng Y J, Wei Y C, Wu H L, et al. Biodegradation of vulcanized natural rubber by enriched bacterial consortia[J]. Chemical Engineering Journal, 2024, 481: 148685. |
| [26] | Ma Y X, Yan F, An L L, et al. Transcriptome analysis of changes in M. aeruginosa growth and microcystin production under low concentrations of ethinyl estradiol[J]. Science of the Total Environment, 2023, 859: 160226. |
| [27] | Wang F, Du W, Huang W X, et al. Linkages of volatile fatty acids and polyhexamethylene guanidine stress during sludge fermentation: metagenomic insights of microbial metabolic traits and adaptation[J]. Chinese Chemical Letters, 2023, 34(6): 107890. |
| [28] | Rozen R, Vockley J, Zhou L B, et al. Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family[J]. Genomics, 1994, 24(2): 280-287. |
| [29] | Manow R, Wang C, Garza E, et al. Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10[J]. World Journal of Microbiology & Biotechnology, 2020, 36(4): 59. |
| [30] | Zhou S F, Ainala S K, Seol E, et al. Inducible gene expression system by 3-hydroxypropionic acid[J]. Biotechnology for Biofuels, 2015, 8: 169. |
| [31] | Harris D J, Assink R A, Celina M. NMR analysis of oxidatively aged HTPB/IPDI polyurethane rubber: degradation products, dynamics, and heterogeneity[J]. Macromolecules, 2001, 34(19): 6695-6700. |
| [32] | 康莹, 陈智群, 陈曼, 等. 复合固体推进剂长贮中HTPB胶微结构损伤研究[J]. 固体火箭技术, 2015, 38(4): 519-522, 527. |
| Kang Y, Chen Z Q, Chen M, et al. Microstructure damage of HTPB glue in the long-time storage of composite solid propellants[J]. Journal of Solid Rocket Technology, 2015, 38(4): 519-522, 527. | |
| [33] | Lv G Z, Cen L, Tan X W, et al. Preparation of epoxidized acrylonitrile butadiene rubber and its compatibilization effect on water-swellable rubber composites[J]. Journal of Applied Polymer Science, 2019, 136(26): 47694. |
| [34] | Huerta Lwanga E, Thapa B, Yang X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: a potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753-757. |
| [35] | Cheng X T, Xia M L, Yang Y. Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms[J]. Journal of Hazardous Materials, 2023, 448: 130940. |
| [1] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [2] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| [3] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| [4] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [5] | Zihang ZHAI, Jie JIANG, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis and properties of ternary random copolyester PBSF based on 2,5-furandicarboxylic acid [J]. CIESC Journal, 2025, 76(2): 868-878. |
| [6] | Xin YING, Miao DU, Pengju PAN, Guorong SHAN. Synthesis, structure and properties of high refrective index polythiourethane [J]. CIESC Journal, 2025, 76(2): 858-867. |
| [7] | Chenlong GUO, Zhengqi PENG, Bingxue JIANG, Zhengkai WU, Deliang WANG, Qingyue WANG, Jieyuan ZHENG, Lim Khak Ho, Shengbin SHI, Xuan YANG, Pingwei LIU, Wenjun WANG. Advances in upcycling of post-consumer PET [J]. CIESC Journal, 2025, 76(2): 532-542. |
| [8] | Yanping JIA, Yanju MA, Wenxin GUAN, Bin YANG, Jian ZHANG, Lanhe ZHANG. Process conditions optimization and degradation mechanism of dye wastewater by Fe0/H2O2 system using response surface methodology [J]. CIESC Journal, 2025, 76(1): 348-362. |
| [9] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
| [10] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
| [11] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
| [12] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
| [13] | Tao SUN, Meili SUN, Ran LU, Yizi YU, Kaifeng WANG, Xiaojun JI. Synthetic biology of yeasts drives green biomanufacturing of succinic acid [J]. CIESC Journal, 2024, 75(4): 1382-1393. |
| [14] | Wenhui ZHANG, Ruyi TANG, Xili CUI, Huabin XING. Fluorine spectrum analysis and structural characterization of Y-type perfluoropolyether carboxylic acid [J]. CIESC Journal, 2024, 75(4): 1718-1723. |
| [15] | Shupeng WANG, Jianjun DU, Yao YAO, Jiangli FAN, Xiaojun PENG. Mitochondria-targeted rhodamine photosensitizers for tumor fluorescence imaging [J]. CIESC Journal, 2024, 75(4): 1679-1686. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||