CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6718-6728.DOI: 10.11949/0438-1157.20250292
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shibiao XU1(
), Zhengbing WEI1, Mengfan BAO1, Yi CHENG1, Yanggang JIA1, Na LIN1, Aiqin MAO1,2(
)
Received:2025-03-24
Revised:2025-05-11
Online:2026-01-23
Published:2025-12-31
Contact:
Aiqin MAO
徐世彪1(
), 韦正兵1, 鲍梦凡1, 程怡1, 贾洋刚1, 林娜1, 冒爱琴1,2(
)
通讯作者:
冒爱琴
作者简介:徐世彪(2000—),男,硕士研究生,xushibiao002@163.com
基金资助:CLC Number:
Shibiao XU, Zhengbing WEI, Mengfan BAO, Yi CHENG, Yanggang JIA, Na LIN, Aiqin MAO. Cu cation vacancies enhance the lithium storage performance of perovskite-type high-entropy oxides[J]. CIESC Journal, 2025, 76(12): 6718-6728.
徐世彪, 韦正兵, 鲍梦凡, 程怡, 贾洋刚, 林娜, 冒爱琴. Cu阳离子空位提升钙钛矿型高熵氧化物储锂性能[J]. 化工学报, 2025, 76(12): 6718-6728.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 晶胞参数 | 可靠性因子 | ||||||
|---|---|---|---|---|---|---|---|---|
| a/Å | b/Å | c/Å | α=β=γ/(°) | Vm/Å3 | Rp/% | Rwp/% | χ2 | |
| Cu0 | 3.897 | 3.897 | 3.897 | 90 | 59.12 | 9.18 | 7.01 | 3.74 |
| Cu0.1 | 3.892 | 3.892 | 3.892 | 90 | 58.99 | 7.63 | 5.74 | 2.79 |
| Cu0.2 | 3.894 | 3.894 | 3.894 | 90 | 59.05 | 7.75 | 5.88 | 3.13 |
Table 1 Lattice parameter of samples and the reliability factors of the Rietveld refinement
| 样品 | 晶胞参数 | 可靠性因子 | ||||||
|---|---|---|---|---|---|---|---|---|
| a/Å | b/Å | c/Å | α=β=γ/(°) | Vm/Å3 | Rp/% | Rwp/% | χ2 | |
| Cu0 | 3.897 | 3.897 | 3.897 | 90 | 59.12 | 9.18 | 7.01 | 3.74 |
| Cu0.1 | 3.892 | 3.892 | 3.892 | 90 | 58.99 | 7.63 | 5.74 | 2.79 |
| Cu0.2 | 3.894 | 3.894 | 3.894 | 90 | 59.05 | 7.75 | 5.88 | 3.13 |
Fig.2 N2 absorption-desorption isothermal curves and BJH pore size distribution of the samples (a); The metal element contents of the Cu0.1 and Cu0.2 samples measured by ICP (b);SEM patterns Cu0 (c), Cu0.1 (d) and Cu0.2 (e); EDS mapping patterns of Cu0.1 sample (f)
| 样品 | 比表面积/(m2·g-1) | 孔体积/(cm3·g-1) | 平均孔径/nm | 最可几 孔径/nm |
|---|---|---|---|---|
| Cu0 | 17.23 | 0.104 | 20.83 | 2.771 |
| Cu0.1 | 18.84 | 0.119 | 20.78 | 3.047 |
| Cu0.2 | 14.90 | 0.083 | 19.28 | 2.324 |
Table 2 BET surface areas, pore volume, average pore size and the most probable pore size of the samples
| 样品 | 比表面积/(m2·g-1) | 孔体积/(cm3·g-1) | 平均孔径/nm | 最可几 孔径/nm |
|---|---|---|---|---|
| Cu0 | 17.23 | 0.104 | 20.83 | 2.771 |
| Cu0.1 | 18.84 | 0.119 | 20.78 | 3.047 |
| Cu0.2 | 14.90 | 0.083 | 19.28 | 2.324 |
| 样品 | 阳离子价态浓度 | OV /% | |||||
|---|---|---|---|---|---|---|---|
| La3+ | Cr3+ | Fe2+/Fe3+ | Mn3+/Mn4+ | Ni2+/Ni3+ | Cu+/Cu2+ | ||
| Cu0 | 1 | 1 | 46.1/53.9 | 53.5/46.5 | 54.2/45.8 | 0 | 27.6 |
| Cu0.1 | 1 | 1 | 53.6/46.4 | 55.8/44.2 | 54.9/45.1 | 42.4/57.6 | 41.2 |
| Cu0.2 | 1 | 1 | 52.3/47.7 | 54.8/45.2 | 61.5/38.5 | 54.9/45.1 | 27.4 |
Table 3 Concentration ratio of cationic valence states in XPS and oxygen vacancy concentration
| 样品 | 阳离子价态浓度 | OV /% | |||||
|---|---|---|---|---|---|---|---|
| La3+ | Cr3+ | Fe2+/Fe3+ | Mn3+/Mn4+ | Ni2+/Ni3+ | Cu+/Cu2+ | ||
| Cu0 | 1 | 1 | 46.1/53.9 | 53.5/46.5 | 54.2/45.8 | 0 | 27.6 |
| Cu0.1 | 1 | 1 | 53.6/46.4 | 55.8/44.2 | 54.9/45.1 | 42.4/57.6 | 41.2 |
| Cu0.2 | 1 | 1 | 52.3/47.7 | 54.8/45.2 | 61.5/38.5 | 54.9/45.1 | 27.4 |
Fig.4 CV curves at 0.1 mV·s-1 sweep rate (a) and charge/discharge profiles(b) and dQ/dV plots(c) at 200 mA·g-¹ of the Cu0.1 electrode; cycling performance/Coulombic efficiency (d) and rate performance of each electrode (e)
Fig.5 CV curves of Cu0.1 electrode at different scan rates (a); The relationship between lgip and lgv (b); Contribution ratios of pseudocapacitive capacities at different scan rates of the Cu0.1 electrode (c); Contribution ratios of the electrodes (d); The relationship between ip and v1/2(e); The b-value of pseudocapacitive and lithium-ion diffusion coefficient calculated from CV(f); Charge/discharge curves during the GITT test (g) and DLi+ during the charge/discharge process (h)
| [1] | Anandkumar M, Trofimov E. Synthesis, properties, and applications of high-entropy oxide ceramics: current progress and future perspectives[J]. Journal of Alloys and Compounds, 2023, 960: 170690. |
| [2] | 黄俊达, 朱宇辉, 冯煜, 等. 二次电池研究进展[J]. 物理化学学报, 2022, 38(12): 2208008. |
| Huang J D, Zhu Y H, Feng Y, et al. Research progress on key materials and technologies for secondary batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(12): 2208008. | |
| [3] | Lim S, Kim J H, Yamada Y, et al. Improvement of rate capability by graphite foam anode for Li secondary batteries[J]. Journal of Power Sources, 2017, 355: 164-170. |
| [4] | Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9: 3400. |
| [5] | Chen G J, Li C W, Jia H M, et al. A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity[J]. Journal of Advanced Ceramics, 2024, 13(9): 1369-1381. |
| [6] | Bai Y H, Li J R, Lu H, et al. Ultrafast high-temperature sintering of high-entropy oxides with refined microstructure and superior lithium-ion storage performance[J]. Journal of Advanced Ceramics, 2023, 12(10): 1857-1871. |
| [7] | Nguyen T X, Tsai C C, Patra J, et al. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 430: 132658. |
| [8] | Patra J, Nguyen T X, Tsai C C, et al. Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(17): 2110992. |
| [9] | Xiao B, Wu G, Wang T D, et al. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries[J]. Nano Energy, 2022, 95: 106962. |
| [10] | Wang K, Hua W B, Huang X H, et al. Synergy of cations in high entropy oxide lithium ion battery anode[J]. Nature Communications, 2023, 14(1): 1487. |
| [11] | Luo X F, Patra J, Chuang W T, et al. Charge-discharge mechanism of high‐entropy Co-free spinel oxide toward Li+ storage examined using operando quick-scanning X-ray absorption spectroscopy[J]. Advanced Science, 2022, 9(21): 2201219. |
| [12] | Li Y N, Wang B B, Wang Y L, et al. Modulating crystal structure and lithium-ion storage performance of high-entropy oxide (CrMnFeCoNiZn)3O4 by single element extraction[J]. Composites Part B: Engineering, 2025, 294: 112175. |
| [13] | Gao P, Chen Z, Gong Y X, et al. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals[J]. Advanced Energy Materials, 2020, 10(14): 1903780. |
| [14] | Yan J H, Wang D, Zhang X Y, et al. A high-entropy perovskite titanate lithium-ion battery anode[J]. Journal of Materials Science, 2020, 55(16): 6942-6951. |
| [15] | Hou S S, Su L, Wang S, et al. Unlocking the origins of highly reversible lithium storage and stable cycling in a spinel high-entropy oxide anode for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(4): 2307923. |
| [16] | 张欣, 韩登宝, 陈小梅, 等. 钙钛矿材料制备中的溶剂配位效应[J]. 物理化学学报, 2021, 37(4): 2008055. |
| Zhang X, Han D B, Chen X M, et al. Effects of solvent coordination on perovskite crystallization[J]. Acta Physico- Chimica Sinica, 2021, 37(4): 2008055. | |
| [17] | Liu X F, Xing Y Y, Xu K, et al. Kinetically accelerated lithium storage in high‐entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies[J]. Small, 2022, 18(18): 2200524. |
| [18] | Zhang R, Liu Z L, Gao T N, et al. A solvent‐polarity‐induced interface self‐assembly strategy towards mesoporous triazine‐based carbon materials[J]. Angewandte Chemie International Edition, 2021, 60(45): 24299-24305. |
| [19] | Feng D Y, Dong Y B, Zhang L L, et al. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol[J]. Angewandte Chemie International Edition, 2020, 59(44): 19503-19509. |
| [20] | Li X L, Lin Z F, Jin N, et al. Perovskite‐type SrVO3 as high‐performance anode materials for lithium-ion batteries[J]. Advanced Materials, 2022, 34(46): 2107262. |
| [21] | Yang Y, Zhu J W, Wang P Y, et al. NH2-MIL-125 (Ti) derived flower-like fine TiO2 nanoparticles implanted in N-doped porous carbon as an anode with high activity and long cycle life for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(6): 2106002. |
| [22] | Petrovičovà B, Xu W L, Musolino M G, et al. High-entropy spinel oxides produced via sol-gel and electrospinning and their evaluation as anodes in Li-ion batteries[J]. Applied Sciences, 2022, 12(12): 5965. |
| [23] | Howng W Y, Thorn R J. Investigation of the electronic structure of L a 1 - x ( M 2 + ) x C r O 3 , Cr2O3 and La2O3 by X-ray photoelectron spectroscopy[J]. Journal of Physics and Chemistry of Solids, 1980, 41(1): 75-81. |
| [24] | Jia Y G, Chen S J, Shao X, et al. Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides[J]. Journal of Advanced Ceramics, 2023, 12(6): 1214-1227. |
| [25] | Xiao B, Wu G, Wang T D, et al. Enhanced Li-ion diffusion and cycling stability of Ni-free high-entropy spinel oxide anodes with high-concentration oxygen vacancies[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2792-2803. |
| [26] | Tian K H, Duan C Q, Ma Q, et al. High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries[J]. Rare Metals, 2022, 41(4): 1265-1275. |
| [27] | Wei S, Wan C C, Zhang L Y, et al. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode [J]. Chemical Engineering Journal, 2022, 429: 132242. |
| [28] | Nguyen T X, Patra J, Tsai C C, et al. Secondary-phase-induced charge-discharge performance enhancement of Co-free high entropy spinel oxide electrodes for Li-ion batteries[J]. Advanced Functional Materials, 2023, 33(30): 2300509. |
| [29] | 冯炜程, 于景成, 杨溢澜, 等. 调控双钙钛矿中高熵组分促进高温析氧反应[J]. 物理化学学报, 2024, 40(6): 2306013. |
| Feng W C, Yu J C, Yang Y L, et al. Regulating the high entropy component of double perovskite for high-temperature oxygen evolution reaction[J]. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013. | |
| [30] | Yang X D, Li F, Liu W, et al. Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium(Ⅵ) under simulated solar light[J]. Applied Catalysis B-Environmental, 2023, 324: 122202. |
| [31] | Duan C Q, Tian K H, Li X L, et al. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X= Cu, Mg, Zn) as the anode material for lithium-ion batteries[J]. Ceramics International, 2021, 47(22): 32025-32032. |
| [32] | 杨毅, 闫崇, 黄佳琦. 锂电池中固体电解质界面研究进展[J]. 物理化学学报, 2021, 37(11): 62-74. |
| Yang Y, Yan C, Huang J Q, et al. Research progress of solid electrolyte interphase in lithium batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 62-74. | |
| [33] | Zhai F Y, Zhu X Y, Zhang W F, et al. Insight of the evolution of structure and energy storage mechanism of (FeCoNiCrMn)3O4 spinel high entropy oxide in life-cycle span as lithium-ion battery anode[J]. Journal of Power Sources, 2024, 603: 234418. |
| [34] | Kim H, Choi W, Yoon J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. |
| [35] | Li X L, Lin Z F, Jin N, et al. Boosting the lithium-ion storage performance of perovskite Sr x VO3- δ via Sr cation and O anion deficient engineering[J]. Chinese Science Bulletin, 2022, 67(22): 2305-2315. |
| [36] | Du W Q, Zheng Y Q, Liu X Y, et al. Oxygen-enriched vacancy spinel MFe2O4/carbon (M= Ni, Mn, Co) derived from metal-organic frameworks toward boosting lithium storage[J]. Chemical Engineering Journal, 2023, 451(2): 138626. |
| [37] | Lv H L, Wang X J, Yang Y, et al. RGO-coated MOF-derived In2Se3 as a high-performance anode for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(3): 2210014. |
| [1] | Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation [J]. CIESC Journal, 2025, 76(S1): 133-139. |
| [2] | Jiaqi XU, Wenjun ZHANG, Yanping YU, Baogen SU, Qilong REN, Qiwei YANG. Numerical simulation and experimental study of the conversion of refinery gas to syngas via thermal plasma [J]. CIESC Journal, 2025, 76(9): 4462-4473. |
| [3] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [4] | Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models [J]. CIESC Journal, 2025, 76(9): 4369-4382. |
| [5] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [6] | Aqiang WU, Xiangqun ZHUGE, Tong LIU, Mingxing WANG, Kun LUO. Impact of nanoscale Prussian blue suspension electrolyte on the performance of lithium-oxygen batteries [J]. CIESC Journal, 2025, 76(8): 4310-4317. |
| [7] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [8] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [9] | Yuhong TIAN, Zhuangzhuang DU, Huifang XU, Ziqiang ZHU, Yucong WANG. Preparation of ZIF-8 based porous liquid and its SO2 adsorption performance [J]. CIESC Journal, 2025, 76(8): 4284-4296. |
| [10] | Yunhao LI, Chungang XU, Xiaosen LI, Jun FU, Yi WANG, Zhaoyang CHEN. Study on the effect of solid-liquid blended promoters on the formation of CO2 hydrates in saline water system [J]. CIESC Journal, 2025, 76(8): 4228-4238. |
| [11] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [12] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [13] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [14] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [15] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||