CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 4976-4987.DOI: 10.11949/0438-1157.20250550
• Reviews and monographs • Previous Articles Next Articles
Wenxuan CAO1(
), Boyang WU2, Jun LI1, Tianji LIU1, Kuo ZENG1,2(
), Haiping YANG1,2(
), Hanping CHEN1,2
Received:2025-05-15
Revised:2025-07-07
Online:2025-11-25
Published:2025-10-25
Contact:
Kuo ZENG, Haiping YANG
曹文轩1(
), 吴泊洋2, 李俊1, 刘天冀1, 曾阔1,2(
), 杨海平1,2(
), 陈汉平1,2
通讯作者:
曾阔,杨海平
作者简介:曹文轩(2001—),男,硕士研究生,1820692947@qq.com
基金资助:CLC Number:
Wenxuan CAO, Boyang WU, Jun LI, Tianji LIU, Kuo ZENG, Haiping YANG, Hanping CHEN. Progress of molten salt-assisted thermochemical high-value conversion of biomass[J]. CIESC Journal, 2025, 76(10): 4976-4987.
曹文轩, 吴泊洋, 李俊, 刘天冀, 曾阔, 杨海平, 陈汉平. 熔融盐辅助生物质热化学高值化转化研究进展[J]. 化工学报, 2025, 76(10): 4976-4987.
Add to citation manager EndNote|Ris|BibTeX
| 反应介质 | 温度 | 原料 | 气化剂 | 产率 | 浓度 | 文献 |
|---|---|---|---|---|---|---|
| Li2CO3-Na2CO3-K2CO3 | 850℃ | 棉秆 | CO2 | CO:850 ml/g | CO>80% | [ |
| 750℃ | 杉木锯末 | H2O(S/B=1) | H2:807.53 ml/g | H2≈55%(体积分数) | [ | |
| 1200 K | 纤维素 | H2O+O2(φ=1~8.8) | — | H2/CO:0.76~1.7 | [ | |
| NaOH | 450℃ | 红木锯屑 | — | H2:65.39 g/kg | H2>85%(体积分数) | [ |
| 水稻秸秆 | — | H2:780 ml/g | H2:90.6%(体积分数) | [ | ||
| NaOH-Na2CO3 | 750℃ | 微拟球藻 | — | H2:71.48 mmol/g | H2:86.1% | [ |
Table 1 Molten salt assisted syngas preparation from biomass
| 反应介质 | 温度 | 原料 | 气化剂 | 产率 | 浓度 | 文献 |
|---|---|---|---|---|---|---|
| Li2CO3-Na2CO3-K2CO3 | 850℃ | 棉秆 | CO2 | CO:850 ml/g | CO>80% | [ |
| 750℃ | 杉木锯末 | H2O(S/B=1) | H2:807.53 ml/g | H2≈55%(体积分数) | [ | |
| 1200 K | 纤维素 | H2O+O2(φ=1~8.8) | — | H2/CO:0.76~1.7 | [ | |
| NaOH | 450℃ | 红木锯屑 | — | H2:65.39 g/kg | H2>85%(体积分数) | [ |
| 水稻秸秆 | — | H2:780 ml/g | H2:90.6%(体积分数) | [ | ||
| NaOH-Na2CO3 | 750℃ | 微拟球藻 | — | H2:71.48 mmol/g | H2:86.1% | [ |
| 反应介质 | 前体 | 温度/℃ | 比表面积/(m2/g) | 性能 | 文献 |
|---|---|---|---|---|---|
| ZnCl2 | 花生壳 | 480 | 1642 | 甲基蓝吸附:876 mg/g | [ |
| CaCl2 | 花生壳 花生壳 | 850 850 | 316 | — | [ [ |
| Na2CO3-K2CO3 | 408 | 比电容:160 F/g | |||
| Na2CO3-K2CO3 | 煮熟的咖啡豆 | 800 | 436 | 比电容:161 F/g | [ |
| KOH | 树脂 | 600 | 1094.14 | 机械强度:0.35 MPa | [ |
Table 2 Molten salt-assisted preparation of porous carbon from biomass
| 反应介质 | 前体 | 温度/℃ | 比表面积/(m2/g) | 性能 | 文献 |
|---|---|---|---|---|---|
| ZnCl2 | 花生壳 | 480 | 1642 | 甲基蓝吸附:876 mg/g | [ |
| CaCl2 | 花生壳 花生壳 | 850 850 | 316 | — | [ [ |
| Na2CO3-K2CO3 | 408 | 比电容:160 F/g | |||
| Na2CO3-K2CO3 | 煮熟的咖啡豆 | 800 | 436 | 比电容:161 F/g | [ |
| KOH | 树脂 | 600 | 1094.14 | 机械强度:0.35 MPa | [ |
| 盐类型 | 相对产量/% | 比表面积/(m2/g) |
|---|---|---|
| LiCl-KCl | 100 | 82 |
| LiCl/KCl+KOH | 10.3 | 997 |
| LiCl/KCl+NaBO2 | 93 | 137 |
| LiCl/KCl+K2CO3 | 52.7 | 1064 |
| LiCl/KCl+KNO3 | 32.6 | 1912 |
| LiCl/KCl+KH2PO4 | 93.7 | 64 |
| LiCl/KCl+K2SO4 | 55.4 | 1520 |
| LiCl/KCl+KClO3 | 40.2 | 1252 |
Table 3 Effects of coupling different oxysalts in LiCl-KCl on the physicochemical properties of carbon materials[61]
| 盐类型 | 相对产量/% | 比表面积/(m2/g) |
|---|---|---|
| LiCl-KCl | 100 | 82 |
| LiCl/KCl+KOH | 10.3 | 997 |
| LiCl/KCl+NaBO2 | 93 | 137 |
| LiCl/KCl+K2CO3 | 52.7 | 1064 |
| LiCl/KCl+KNO3 | 32.6 | 1912 |
| LiCl/KCl+KH2PO4 | 93.7 | 64 |
| LiCl/KCl+K2SO4 | 55.4 | 1520 |
| LiCl/KCl+KClO3 | 40.2 | 1252 |
| [1] | 解云翔. 中国生物质能发展现状及应用探究[J]. 化工研究, 2022, 33(6): 555-560. |
| Xie Y X. Exploring the current situation and applications of biomass energy development in China[J]. Chemical Research. 2022, 33(6): 555-560. | |
| [2] | 樊星, 周健铿, 王晓斐. 基于耦合熔融盐储热的火电机组灵活调峰系统设计与实现[J]. 中国机械, 2024(20): 56-59. |
| Fan X, Zhou J K, Wang X F. Design and realisation of flexible peaking system for thermal power units based on coupled molten salt thermal storage[J]. Machine China, 2024(20): 56-59. | |
| [3] | He X, Zeng K, Xie Y P, et al. The effects of temperature and molten salt on solar pyrolysis of lignite[J]. Energy, 2019, 181: 407-416. |
| [4] | Genuino H C, Contucci L, Velasco J O, et al. Pyrolysis of LignoBoost lignin in ZnCl2-KCl-NaCl molten salt media: insights into process-pyrolysis oil yield and composition relations[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 106005. |
| [5] | She H, Lv P, He X X, et al. Characteristics of CO2 gasification reaction and biochar structure evolution of rice straw in K2CO3-Na2CO3-Li2CO3 ternary molten salt[J]. Process Safety and Environmental Protection, 2025, 197: 107051. |
| [6] | Fechler N, Fellinger T, Antonietti M. “Salt templating”: a simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials, 2013, 25(1): 75-79. |
| [7] | Yin H Y, Lu B H, Xu Y, et al. Harvesting capacitive carbon by carbonization of waste biomass in molten salts[J]. Environmental Science & Technology, 2014, 48(14): 8101-8108. |
| [8] | Hathaway B J, Davidson J H. Demonstration of a prototype molten salt solar gasification reactor[J]. Solar Energy, 2017, 142: 224-230. |
| [9] | Xu N N, Wu T, Lv H. Electrochemical conversion of rice husk in molten salts to photocatalyst for CO2 photoreduction[J]. Functional Materials Letters, 2025, 18(2): 2550006. |
| [10] | Ying H J, Guo P Z, Shen J W, et al. Preparation of activated carbon by molten salt electrochemical method and adsorption and recovery on chromium[J]. Industrial Crops and Products, 2024, 222: 119814. |
| [11] | Shihadeh A, Hochgreb S. Diesel engine combustion of biomass pyrolysis oils[J]. Energy & Fuels, 2000, 14(2): 260-274. |
| [12] | Khodier A, Kilgallon P, Legrave N, et al. Pilot-scale combustion of fast-pyrolysis bio-oil: ash deposition and gaseous emissions[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 397-403. |
| [13] | Zhang M M, Wu H W. Stability of emulsion fuels prepared from fast pyrolysis bio-oil and glycerol[J]. Fuel, 2017, 206: 230-238. |
| [14] | Jiang H T, Ai N, Wang M, et al. Experimental study on thermal pyrolysis of biomass in molten salt media[J]. Electrochemistry, 2009, 77(8): 730-735. |
| [15] | Sridharan B, Wilbers E, Winkelman J G M, et al. Efficient depolymerization of kraft lignin using zinc chloride based (molten) salts[J]. Biomass and Bioenergy, 2024, 188: 107309. |
| [16] | Wei Y, Tang J T, Ji J B. The characteristics of products from pyrolysis of seaweed in molten carbonates[J]. Transactions of the ASABE, 2019, 62(3): 787-794. |
| [17] | Ali M, Mahmood F, Magoua Mbeugang C F, et al. Molten chloride salt pyrolysis of biomass: effects of temperature and mass ratio of molten salt to biomass[J]. Energy, 2025, 316: 134634. |
| [18] | Rizkiana J, Guan G Q, Widayatno W B, et al. Oil production from mild pyrolysis of low-rank coal in molten salts media[J]. Applied Energy, 2015, 154: 944-950. |
| [19] | Xie Y P, Zeng K, Flamant G, et al. Solar pyrolysis of cotton stalk in molten salt for bio-fuel production[J]. Energy, 2019, 179: 1124-1132. |
| [20] | Zeng K, Li J, Xie Y P, et al. Molten salt pyrolysis of biomass: the mechanism of volatile reforming and pyrolysis[J]. Energy, 2020, 213: 118801. |
| [21] | Zabeti M, Nguyen T S, Lefferts L, et al. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina[J]. Bioresource Technology, 2012, 118: 374-381. |
| [22] | Mourant D, Wang Z H, He M, et al. Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil[J]. Fuel, 2011, 90(9): 2915-2922. |
| [23] | Wang S R, Guo Z G, Cai Q J, et al. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production[J]. Biomass and Bioenergy, 2012, 45: 138-143. |
| [24] | Yang F, Hu H Y, Gao Q, et al. In-depth experimental study on thermochemical conversion of furan in molten alkali carbonates[J]. Energy & Fuels, 2020, 34(10): 12724-12733. |
| [25] | Xue Y, Bai X L. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
| [26] | Su Z Y, Jin K L, Wu J B, et al. Phosphorus doped biochar as a deoxygenation and denitrogenation catalyst for ex-situ upgrading of vapors from microwave-assisted co-pyrolysis of microalgae and waste cooking oil[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105538. |
| [27] | Stefanidis S D, Kalogiannis K G, Iliopoulou E F, et al. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102(17): 8261-8267. |
| [28] | Peng J, Li J, Zhong D, et al. Transformation of nitrogen during solar pyrolysis of algae in molten salt[J]. Fuel Processing Technology, 2023, 242: 107664. |
| [29] | Xu K, Li J, Zeng K, et al. The characteristics and evolution of nitrogen in bio-oil from microalgae pyrolysis in molten salt[J]. Fuel, 2023, 331: 125903. |
| [30] | Tian K, Liu W J, Qian T T, et al. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2014, 48(18): 10888-10896. |
| [31] | Qi P G, Su Y H, Yang L R, et al. Catalytic pyrolysis of rice husk to co-produce hydrogen-rich syngas, phenol-rich bio-oil and nanostructured porous carbon[J]. Energy, 2024, 298: 131427. |
| [32] | Li J, Zeng K, Zhong D, et al. Algae pyrolysis in alkaline molten salt: products transformation[J]. Fuel, 2024, 358: 129868. |
| [33] | Özbay G, Koçak E, Ahmad M S. Pyrolysis of water buffalo manure: influence of temperature and alkali hydroxide additives on the quality of bio-oil[J]. Biocatalysis and Agricultural Biotechnology, 2021, 38: 102230. |
| [34] | Foong S Y, Liew R K, Yang Y F, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions[J]. Chemical Engineering Journal, 2020, 389: 124401. |
| [35] | Lam S S, Liew R K, Jusoh A, et al. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 741-753. |
| [36] | Zeng K, Yang X Y, Xie Y P, et al. Molten salt pyrolysis of biomass: the evaluation of molten salt[J]. Fuel, 2021, 302: 121103. |
| [37] | Olivares R I, Chen C L, Wright S. The thermal stability of molten lithium-sodium-potassium carbonate and the influence of additives on the melting point[J]. Journal of Solar Energy Engineering, 2012, 134(4): 041002. |
| [38] | Ding L, Zhou Z J, Guo Q H, et al. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144. |
| [39] | Li J, Xie Y P, Zeng K, et al. Biomass gasification in molten salt for syngas production[J]. Energy, 2020, 210: 118563. |
| [40] | Jin K, Ji D X, Xie Q L, et al. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates[J]. International Journal of Hydrogen Energy, 2019, 44(41): 22919-22925. |
| [41] | Hathaway B J, Davidson J H. Autothermal hybridization and controlled production of hydrogen-rich syngas in a molten salt solar gasifier[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15257-15267. |
| [42] | Jiang H T, Wu Y R, Fan H, et al. Hydrogen production from biomass pyrolysis in molten alkali[J]. AASRI Procedia, 2012, 3: 217-223. |
| [43] | 沈琦, 何咏涛, 姬登祥, 等. 熔融碱热解生物质制氢[J]. 化工进展, 2010, 29(S1): 190-194. |
| Shen Q, He Y T, Ji D X, et al. Hydrogen production by pyrolysis of biomass in molten alkali[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 190-194. | |
| [44] | Li J, Zeng K, Zhong D, et al. Algae pyrolysis in molten NaOH-Na2CO3 for hydrogen production[J]. Environmental Science & Technology, 2023, 57(16): 6485-6493. |
| [45] | Jin G, Iwaki H, Arai N, et al. Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts[J]. Energy, 2005, 30(7): 1192-1203. |
| [46] | Hathaway B J, Honda M, Kittelson D B, et al. Steam gasification of plant biomass using molten carbonate salts[J]. Energy, 2013, 49: 211-217. |
| [47] | Hathaway B J, Davidson J H. Solar steam gasification of cellulose in a molten alkali salt: salt chemistry and reactor performance[J]. Energy & Fuels, 2020, 34(2): 1811-1821. |
| [48] | Saxena S K. Hydrogen production by chemically reacting species[J]. International Journal of Hydrogen Energy, 2003, 28(1): 49-53. |
| [49] | Liu G J, Lu H F, Zeng J L, et al. Insights into the temperature dependence of reaction pathways in hydrogen production from model biomass via NaOH thermal treatment[J]. Industrial Crops and Products, 2024, 209: 117948. |
| [50] | He J, Xie T, Ren Y, et al. Application of molten salt thermoelectric effect in biomass preparation of hydrogen-rich gas, porous biochar and molten salt regeneration[J]. Science of the Total Environment, 2025, 964: 178540. |
| [51] | Ribas M C, Adebayo M A, Prola L D T, et al. Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions[J]. Chemical Engineering Journal, 2014, 248: 315-326. |
| [52] | Yang J, Qiu K Q. Experimental design to optimize the preparation of activated carbons from herb residues by vacuum and traditional ZnCl2 chemical activation[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 4057-4064. |
| [53] | Han S J, Sohn K, Hyeon T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes[J]. Chemistry of Materials, 2000, 12(11): 3337-3341. |
| [54] | Chen H X, Lu X Y, Wang H H, et al. Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy[J]. Journal of Energy Chemistry, 2020, 49: 348-357. |
| [55] | Young C, Lin J J, Wang J, et al. Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors[J]. Chemistry, 2018, 24(23): 6127-6132. |
| [56] | Zhang S G, Ueno K, Dokko K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500117. |
| [57] | Nzihou A, Stanmore B, Sharrock P. A review of catalysts for the gasification of biomass char, with some reference to coal[J]. Energy, 2013, 58: 305-317. |
| [58] | Wei Y, Shen C Y, Xie J L, et al. Study on reaction mechanism of superior bamboo biochar catalyst production by molten alkali carbonates pyrolysis and its application for cellulose hydrolysis[J]. Science of the total Environment, 2020, 712: 136435. |
| [59] | Porada S, Schipper F, Aslan M, et al. Capacitive deionization using biomass-based microporous salt-templated heteroatom-doped carbons[J]. ChemSusChem, 2015, 8(11): 1867-1874. |
| [60] | Shang H S, Lu Y J, Zhao F, et al. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium[J]. RSC Advances, 2015, 5(92): 75728-75734. |
| [61] | Liu X F, Antonietti M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69: 460-466. |
| [62] | 周方浪, 杨静, 杨海艳, 等. KOH原位活化对木质素基泡沫炭的结构性能调控[J]. 林业工程学报, 2019, 4(2): 99-105. |
| Zhou F L, Yang J, Yang H Y, et al. The in situ regulation of structural properties of lignin-based carbon foam by KOH[J]. Journal of Forestry Engineering, 2019, 4(2): 99-105. | |
| [63] | 张静娴, 易观贵, 刘应亮, 等. KOH活化的炭干凝胶及其储氢性能(英文)[J]. 无机化学学报, 2012, 28(12): 2565-2572. |
| Zhang J X, Yi G G, Liu Y L, et al. KOH-activated carbon xerogels for hydrogen storage[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(12): 2565-2572. | |
| [64] | Chen W, Gong M, Li K X, et al. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH[J]. Applied Energy, 2020, 278: 115730. |
| [65] | Li B, Tang J Z, Xie X, et al. Char structure evolution during molten salt pyrolysis of biomass: effect of temperature[J]. Fuel, 2023, 331: 125747. |
| [66] | Lu B H, Zhou J, Song Y Q, et al. Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction[J]. Faraday Discussions, 2016, 190: 147-159. |
| [67] | Fan L Z, Qiao S Y, Song W L, et al. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors[J]. Electrochimica Acta, 2013, 105: 299-304. |
| [68] | Hsieh C T, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics[J]. Carbon, 2002, 40(5): 667-674. |
| [69] | Li J, Zhong D, Zeng K, et al. Co-pyrolysis of algae and lignocellulosic biomass in molten salts to produce N-doped carbon for supercapacitor application[J]. Energy, 2024, 305: 132127. |
| [70] | 贾雷, 严红燕, 李慧, 等. 熔盐电脱氧法制备金属及合金的研究进展[J]. 矿产综合利用, 2020(3): 69-77. |
| Jia L, Yan H Y, Li H, et al. Research progress on FFC molten salt electro-deoxidation[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 69-77. | |
| [71] | Rong T, Kang H Y, Yuan Y Q, et al. Exploring the graphitization transformation mechanism of deposited carbon in molten salt electrolysis: a novel insight from molecular structure models[J]. Chemical Engineering Journal, 2024, 499: 156016. |
| [72] | Zhu Z L, Zuo H B, Li S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage[J]. Journal of Materials Chemistry A, 2019, 7(13): 7533-7540. |
| [73] | Li S J, Han X, Song W L, et al. Nickel-promoted electrocatalytic graphitization of biochars for energy storage: mechanistic understanding using multi-scale approaches[J]. Angewandte Chemie International Edition, 2023, 62(22): e202301985. |
| [74] | Hsu W K, Hare J P, Terrones M, et al. Condensed-phase nanotubes[J]. Nature, 1995, 377(6551): 687. |
| [75] | Novoselova I A, Oliinyk N F, Volkov S V, et al. Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40(7): 2231-2237. |
| [76] | Chen X, Zhao H J, Xie H W, et al. Tuning the preferentially electrochemical growth of carbon at the “gaseous CO2-liquid molten salt-solid electrode” three-phase interline[J]. Electrochimica Acta, 2019, 324: 134852. |
| [77] | Wang P, Wang M Z, Lu J Q. Electrochemical conversion of CO2 into value-added carbon with desirable structures via molten carbonates electrolysis[J]. RSC Advances, 2021, 11(46): 28535-28541. |
| [78] | Wu H J, Li Z D, Ji D Q, et al. Effect of molten carbonate composition on the generation of carbon material[J]. RSC Advances, 2017, 7(14): 8467-8473. |
| [79] | Williams J M, Nitzsche M P, Bromberg L, et al. Hybrid thermo-electrochemical conversion of plastic wastes commingled with marine biomass to value-added products using renewable energy[J]. Energy & Environmental Science, 2023, 16(12): 5805-5821. |
| [80] | Ratchahat S, Kodama S, Tanthapanichakoon W, et al. CO2 gasification of biomass wastes enhanced by Ni/Al2O3 catalyst in molten eutectic carbonate salt[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11809-11822. |
| [81] | 姬登祥, 黄加艳, 张咪, 等. 碳酸盐作用下生物质热裂解制富氢气体[J]. 太阳能学报, 2018, 39(12): 3505-3510. |
| Ji D X, Huang J Y, Zhang M, et al. Biomass pyrolysis to produce hydrogen-rich gas under action of carbonates[J]. Acta Energiae Solaris Sinica, 2018, 39(12): 3505-3510. |
| [1] | Zequan LI, Tianyu CAI, Jiajun LIU, Qizhi CHEN, Peiwen XIAO, Xiaofei XU, Shuangliang ZHAO. Synthesis and application of lignin-based flocculants [J]. CIESC Journal, 2025, 76(9): 4709-4722. |
| [2] | Ru ZHANG, Chuanqiang ZHU, Dong ZHANG, Zheng HUANG, Yuguo XIAO, Ming LI, Changming LI. Characterisation of nitrogenous pollutants in solid wastes associated with waste incineration process using polymer non-catalytic reduction denitrification [J]. CIESC Journal, 2025, 76(9): 4944-4959. |
| [3] | Jiaqi XU, Wenjun ZHANG, Yanping YU, Baogen SU, Qilong REN, Qiwei YANG. Numerical simulation and experimental study of the conversion of refinery gas to syngas via thermal plasma [J]. CIESC Journal, 2025, 76(9): 4462-4473. |
| [4] | Jiahao LIN, Fangzhong FU, Haohui YE, Jin HU, Mingcan YAO, Helin FAN, Xu WANG, Ruixiang WANG, Zhifeng XU. Effect of NdF3 content on local structure and transport properties of NdF3-LiF molten salt [J]. CIESC Journal, 2025, 76(8): 3834-3841. |
| [5] | Xiaoling WANG, Shaoqing WANG, Yungang ZHAO, Fangzhe CHANG, Ruifeng MU. Mechanism of organic Ca transformation during coal hydropyrolysis: insights from ReaxFF molecular dynamics simulations [J]. CIESC Journal, 2025, 76(8): 4297-4309. |
| [6] | Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass [J]. CIESC Journal, 2025, 76(7): 3539-3551. |
| [7] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [8] | Shuyu WANG, Zhiliang XUE, Jing ZHU, Xin FU, Yonggang ZHOU, Yiming HU, Qunxing HUANG. Experimental study on mass and morphological character during scrap tire pyrolysis [J]. CIESC Journal, 2025, 76(7): 3459-3467. |
| [9] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [10] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [11] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [12] | Liang LIU, Jiajun WU, Mengxia QING, Guangya ZHOU, Zihang HE. Characteristics of landed oil sludge pyrolysis and energy balance analysis of the process system [J]. CIESC Journal, 2025, 76(4): 1779-1787. |
| [13] | Quankang SHENG, Ao CHEN, Long CHEN, Yu ZHANG, Shaoyun CHEN, Chenglong HU. In situ growth of oriented polyaniline nanorod array on pencil core and its electrochemical energy storage [J]. CIESC Journal, 2025, 76(4): 1875-1884. |
| [14] | Dongling XU, Yue MA, Lu GONG, Guili MA, Jinke WANG, Fengzhi GUO, Haolun WANG, Sijia LI, Shuyuan LI, Changtao YUE. Co-pyrolysis study of oil shale and bituminous coal in fixed fluidized bed reactor [J]. CIESC Journal, 2025, 76(4): 1742-1753. |
| [15] | Zhongqing LI, Zhiyuan WANG, Xiaojian LUAN, Sikai LIANG, Kai WANG. Preparation of MnO coating based on electroplating-low oxygen partial pressure treatment and coking inhibition properties during thermal cracking of naphtha [J]. CIESC Journal, 2025, 76(3): 1050-1063. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||