CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1875-1884.DOI: 10.11949/0438-1157.20241065

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

In situ growth of oriented polyaniline nanorod array on pencil core and its electrochemical energy storage

Quankang SHENG(), Ao CHEN, Long CHEN, Yu ZHANG, Shaoyun CHEN(), Chenglong HU()   

  1. Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, China
  • Received:2024-09-23 Revised:2024-11-12 Online:2025-05-12 Published:2025-04-25
  • Contact: Shaoyun CHEN, Chenglong HU

铅笔芯上原位生长有序聚苯胺阵列及其电化学储能

盛全康(), 陈奥, 陈龙, 张禹, 陈韶云(), 胡成龙()   

  1. 江汉大学光电材料与技术学院,柔性光电材料与技术教育部重点实验室,湖北 武汉 430056
  • 通讯作者: 陈韶云,胡成龙
  • 作者简介:盛全康(2001—),男,硕士研究生,824943765@qq.com
  • 基金资助:
    湖北省自然科学基金面上项目(2023AFB890)

Abstract:

Conductive polymers could be used as electrode materials for supercapacitors and had great potential applications in small energy storage devices. This article used waste short pencils as raw materials to peel off the pencil core (PC) as a supporting substrate for supercapacitor electrode materials. Then, the ordered polyaniline (PANI) nanorod arrays were in situ grown on the surface of the pencil core by dilute solution method to form PANI@PC electrode. As a carbon material with good conductivity, pencil core could quickly achieve electron transfer and export when it combined with PANI with ordered micro/nano structure. Even at high scanning rates or current densities, the inner active material could still participate in electrode reactions, thereby improving the utilization of electrode materials to enhance the electrochemical properties of composite materials. The experiment showed that the specific capacitance of PANI@PC electrode could reach 470 F/g at a current density of 1 A/g, and the loss of specific capacitance is only 25.5% when the current density increases to 10 A/g. Further analysis of the charge storage mechanism of PANI@PC electrode shows that the electrode reaction is controlled by fast kinetics, that is, the double layer capacitance and Faradaic pseudocapacitance on the surface of PANI@PC electrode contribute, which is conducive to achieving good rate performance of electrode materials. This study could provide guidance for the preparation of composite conductive polymers/nanomaterials for supercapacitors.

Key words: polyaniline, carbon materials, orderly, array structure, electrode materials

摘要:

导电聚合物可以作为超级电容器电极材料,在小型储能设备中具有巨大的潜在应用。采用废旧短铅笔作为原料,将铅笔芯(pencil core, PC)剥离出来作为超级电容器电极材料的支撑基底,然后通过稀溶液法将有序聚苯胺(polyaniline,PANI)纳米棒阵列原位生长在铅笔芯的表面形成PANI@PC电极。铅笔芯作为一种导电性良好的碳材料,当其与有序微纳结构的PANI相结合时,能快速实现电子的传输和导出,即使在高扫描速率或电流密度下,内层活性物质仍能参与电极反应,从而提高电极材料的利用效率,改善复合材料的电化学性能。实验表明,在1 A/g电流密度下PANI@PC电极的比电容可达470 F/g;当电流密度增加至10 A/g时,比电容损失率仅为25.5%。进一步分析PANI@PC电极的电荷存储机制,发现该电极反应由快速动力学控制,即PANI@PC电极表面的双电层电容和法拉第赝电容贡献,这有利于实现电极材料良好的速率性能。本研究可以为超级电容器用导电聚合物电极材料的制备提供指导。

关键词: 聚苯胺, 碳材料, 有序, 阵列结构, 电极材料

CLC Number: