化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3545-3552.doi: 10.11949/0438-1157.20190168

• 材料化学工程与纳米技术 • 上一篇    下一篇

荷叶表面的复刻及微纳结构对疏水性能的影响

向静1(),王宏1,2(),朱恂1,2,丁玉栋1,2,廖强1,2,陈蓉1,2   

  1. 1. 重庆大学工程热物理研究所,重庆 400030
    2. 重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030
  • 收稿日期:2019-03-01 修回日期:2019-06-19 出版日期:2019-09-05 发布日期:2019-09-05
  • 通讯作者: 王宏 E-mail:xiangj@cqu.edu.cn;hongwang@cqu.edu.cn
  • 作者简介:向静(1994—),女,硕士研究生,xiangj@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51676022);中央高校基本科研业务经费项目(2018CDXYDL0001);Venture & Innovation Support Program for Chongqing Overseas Returnees(cx2018053)

Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties

Jing XIANG1(),Hong WANG1,2(),Xun ZHU1,2,Yudong DING1,2,Qiang LIAO1,2,Rong CHEN1,2   

  1. 1. Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
    2. Key Laboratory of Low-Grade Energy Utilization Technologies & Systems, MOE, Chongqing University, Chongqing 400030, China
  • Received:2019-03-01 Revised:2019-06-19 Published:2019-09-05 Online:2019-09-05
  • Contact: Hong WANG E-mail:xiangj@cqu.edu.cn;hongwang@cqu.edu.cn

摘要:

结合改进的模板法和ZnO水热生长法在环氧树脂基底上得到了荷叶仿生超疏水结构,该方法工艺流程简单、制作成本低廉,可以实现微观结构的快速复刻。研究了模板法对天然表面复刻的适用范围,其对荷叶和水稻等具有突起类微观结构表面的复刻效果良好,并研究了水热法中ZnO生长液浓度对纳米结构的影响。同时为了研究不同微观结构对表面疏水性能的影响,制作了光滑表面、纳米结构表面和仿荷叶微米结构表面,并测试了表面的疏水性能。结果表明,粗糙结构能够提高低能表面的疏水性能,微纳复合结构更有利于表面形成超疏水;增加表面的粗糙结构能够增加液滴与固体接触面上的气-液占比,进而使得液滴在表面的接触角增加。

关键词: 仿生, 表面制备, 纳米结构, 微纳复合结构, 界面, 疏水性

Abstract:

Artificial lotus leaves superhydrophobic hierarchical structure was obtained on epoxy resin substrates by improved molding method and zinc oxide hydrothermal growth method. The process of this method is simple and low-cost, and the natural micro-structure can be quickly reproduced on the artificial surface. The molding method is effectively used for lotus and rice leave with protuberant microstructures. And the effect of ZnO growth liquid concentration on nanostructure was also studied. Then, in order to study the influence of microstructures at different scale sizes on the hydrophobic properties of the surface, smooth surface, nanostructure surface and microstructure lotus replica surface were fabricated. the hydrophobic properties of these surfaces were measured. The date shows that the rough structure can improve the hydrophobicity of the surface, and the micro-nano hierarchical structure is more helpful to the formation of superhydrophobicity on the surface. When droplets contact with the surface in Cassie state, the larger the proportion of air on the contact area, the smaller the contact angle and the smaller the sliding angle on the surface.

Key words: biomimetic, surface fabrication, nanostructure, hierarchical structure, interface, hydrophobicit

中图分类号: 

  • TQ 028.8

图1

模板法的制作流程"

图2

干荷叶与模板法得到的仿荷叶表面的SEM图"

图3

仿荷叶微米结构、仿荷叶微纳复合结构和原始材料干荷叶的接触角与滚动角"

图4

荷叶表面微纳复合结构ESEM图[(a)~(c)][32]和仿荷叶微纳复合结构SEM图[(d)~(f)]"

图5

水稻和槐叶萍表面微观结构的原型与复刻表面SEM图"

表1

不同ZnO生长液浓度及其对应的ZnO纳米线形貌"

Concentration of ZnO /

(mol/L)

ZnO nanohair morphology
Average diameter / nm Average length / nm
0.01 25 200
0.025 30 350
0.04 45 400
0.055 75 650
0.07 139 780
0.095 347 890

图6

部分ZnO生长液浓度所对应的纳米线SEM图"

图7

ZnO生长液浓度与仿荷叶微纳复合结构表面的接触角和滚动角的关系"

图8

不同尺度微观表面结构的SEM图"

图9

不同表面硅烷化前后的接触角"

图10

不同尺度微观结构表面的接触角与滚动角"

1 Neinhuis C , Barthlott W . Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-77.
2 Autumn K , Liang Y A , Hsieh S T , et al . Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405(6787): 681-685.
3 Bechert D W , Bruse M , Hage W , et al . Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften, 2000, 87(4): 157-171.
4 Xue F G , Lei J . Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
5 Suter R , Rosenberg O , Loeb S , et al . Locomotion on the water surface: propulsive mechanisms of the fisher spider[J]. Journal of Experimental Biology, 1997, 200(Pt 19): 2523.
6 Vukusic P , Sambles J R , Lawrence C R , et al . Structural color: now you see it—now you don’t[J]. Nature, 2001, 410(6824): 36.
7 Zi J , Yu X D , Li Y Z , et al . Coloration strategies in peacock feathers[J]. Proceedings of the National Academy of Sciences, 2003, 100(22): 12576-12578.
8 Xia Y N X , Whitesides G M . Soft lithography[J]. Encyclopedia of Nanotechnology, 2003, 37(28): 153-184.
9 Tania B , Lisa B P . Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices[J]. International Journal of Nanomedicine, 2006, 1(4): 483-495.
10 Chong M A S , Yue B Z , Han G , et al . Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications[J]. Applied Physics Letters, 2006, 89(23): 233104.
11 Yuan Z , Chen H , Tang J , et al . A novel preparation of polystyrene film with a superhydrophobic surface using a template method[J]. Journal of Physics D Applied Physics, 2007, 40(11): 3485.
12 Green D W , Lee K H , Watson J A , et al . High quality bioreplication of intricate nanostructures from a fragile gecko skin surface with bactericidal properties[J]. Scientific Reports, 2017, 7: 41023.
13 Pulsifer D P , Lakhtakia A . Background and survey of bioreplication techniques[J]. Bioinspiration & Biomimetics, 2011, 6(3): 031001.
14 Gao J , Liu Y L , Xu H P , et al . Mimicking biological structured surfaces by phase-separation micromolding[J]. Langmuir, 2009, 25(8): 4365-4369.
15 Jaggessar A , Shahali H , Mathew A , et al . Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants[J]. Journal of Nanobiotechnology, 2017, 15(1): 64.
16 Sun M H , Luo C X , Xu L P , et al . Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19): 8978.
17 Barthlott W , Mail M , Neinhuis C . Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications[J]. Philos. Trans. A Math. Phys. Eng. Sci., 2016, 374(2073): 1-41.
18 Koch K , Schulte A J , Fischer A , et al . A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces[J]. Bioinspiration & Biomimetics, 2008, 3(4): 10.
19 Lei W , Gong Q H , Zhan S H , et al . Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28(35): 7729-7735.
20 Gao X F , Yan X , Yao X , et al . The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2010, 19(17): 2213-2217.
21 Mohamed A M A , Abdullah A M , Younan N A . Corrosion behavior of superhydrophobic surfaces: a review[J]. Arabian Journal of Chemistry, 2015, 8(6): 749-765.
22 曹墨源, 巴特尔, 柏浩 . 仿生特殊浸润性界面在化学工程与工艺中的应用[J]. 化工学报, 2018, 69(11): 4592-4604.
Cao M Y , Ba T E , Bai H . Applications of bio-inspired surfaces possessing special wettability in chemical engineering and technology[J]. CIESC Journal, 2018, 69(11): 4592-4904.
23 Antonini C , Innocenti M , Horn T , et al . Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science & Technology, 2011, 67(1): 58-67.
24 马强, 吴晓敏 . 表面特性对结霜和融霜排液的影响[J]. 化工学报, 2017, 68(S1): 90-95.
Ma Q , Wu X M . Effect of surface wettability on frosting, defrosting and drainage[J]. CIESC Journal, 2017, 68(S1): 90-95.
25 丁云飞, 殷帅, 廖云丹, 等 . 纳微结构疏水表面结霜过程及抑霜特性[J]. 化工学报, 2012, 63(10): 3213-3219.
Ding Y F , Yin S , Liao Y D , et al . Frosting mechanism and suppression on nano/micro-structured hydrophobic surfaces[J]. CIESC Journal, 2012, 63(10): 3213-3219.
26 吴延鹏, 郭占闯 . 超疏水表面防附尘性能实验分析[J]. 化工学报, 2018, 69(S2): 365-372.
Wu Y P , Guo Z C . Experimental analysis of anti-dust property on superhydrophobic surfaces[J]. CIESC Journal, 2018, 69(S2): 365-372.
27 Nishino T , Meguro M , Nakamae K , et al . The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323.
28 Peng C , Chen Z , Tiwari M K . All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17(4): 355-360.
29 Sun M , Du Y , Xu H Z , et al . Fabrication and wettability of ZnO nanorod array[J]. Journal of Materials Science & Technology, 2009, 25(1): 53-57.
30 Feng X J , Feng L , Jin M H , et al . Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. Journal of the American Chemical Society, 2004, 126(1): 62-63.
31 Greene L E , Yuhas B D , Matt L , et al . Solution-grown zinc oxide nanowires[J]. Cheminform, 2010, 45(19): 7535-7543.
32 Bandelow B . Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion[J]. Soft Matter., 2009, 5(7): 1386-1393.
33 Schulte A J , Koch K , Spaeth M , et al . Biomimetic replicas: transfer of complex architectures with different optical properties from plant surfaces onto technical materials[J]. Acta Biomaterialia, 2009, 5(6): 1848-1854.
34 江雷, 冯琳 . 仿生智能纳米界面材料[M]. 北京: 化学工业出版社, 2007.
Jiang L , Feng L . Biomimetic Intelligent Nano-interface Materials[M]. Beijing: Chemical Industry Press, 2007.
35 Yang S , Ju J , Qiu Y , et al . Peanut leaf inspired multifunctional surfaces[J]. Small, 2014, 10(2): 294-299.
36 Song J , Xu W , Lu Y . One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates[J]. Journal of Materials Science, . 2011, 47(1): 162-168.
37 Song X , Zhai J , Wang Y , et al . Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry B, 2005, 109(9): 4048-4052.
[1] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[2] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[3] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[4] 朱晓兵, 李佳佳, 李怡宁, 杨洪月, 李小松, 刘景林. 氧化锰电催化析氧反应及其电极界面特性[J]. 化工学报, 2021, 72(S1): 398-405.
[5] 安美燕, 王洁冰, 徐震原, 王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
[6] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[7] 胡小龙, 公文学, 彭艺, 胡阳, 汤颖, 何辉, 李文愿, 赵钟兴, 赵祯霞. 配体诱导制备NM88(D)/COF-OMe复合材料及可见光芬顿联合降解抗生素磺胺甲嘧啶研究[J]. 化工学报, 2021, 72(9): 4730-4739.
[8] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
[9] 李南星, 张麟. 靶向于Galectin-10蛋白的哮喘抑制剂设计[J]. 化工学报, 2021, 72(9): 4847-4853.
[10] 孟璐璐, 谢添玺, 陈志豪, 宇高義郎. 材料交错分布型传热板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
[11] 孙雪剑, 宋鹏云, 毛文元, 邓强国, 许恒杰, 陈维. 考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析[J]. 化工学报, 2021, 72(8): 4279-4291.
[12] 王宗旭,李紫欣,白璐,董海峰,张香平. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466-3477.
[13] 刘姝睿, 吴雪娥, 王远鹏. 纳米材料介导微生物胞外电子传递过程的研究进展[J]. 化工学报, 2021, 72(7): 3576-3589.
[14] 蔡中杰, 田盼, 黄忠亮, 黄猛, 黄加乐, 詹国武, 李清彪. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679.
[15] 崔锦,石川,赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱春英,段志青, 高习群, 马友光, 余国琮. 氨基酸在非牛顿流体中的扩散[J]. CIESC Journal, 2006, 14(4): 450 -455 .
[2] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[3] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[4] 张秀莉, 张卫东, 郝新敏, 张慧峰, 张泽廷, 张建春. PTFE多孔膜气体渗透数学模型和膜孔结构的影响[J]. CIESC Journal, 2003, 11(4): 383 -387 .
[5] 梁军, 钱积新. 多变量统计过程监控:进展及其在化学工业的应用[J]. CIESC Journal, 2003, 11(2): 191 -203 .
[6] 杨根生, 施介华, 李景华, 王普, 姚善泾. 十二烷基磺酸钠/异辛烷/正构醇/水微乳状液的相行为及其结构转变的研究[J]. CIESC Journal, 2002, 10(6): 670 -672 .
[7] 陈霭璠, 陈亮媛, 崔梅生, 罗瑞贤, Chungchiun LIU. SPE膜电极及其在化学传感器中的应用[J]. CIESC Journal, 2001, 9(2): 186 -189 .
[8] 黄克谨, 钱积新, 中岩(月劵), 中根墝, 高松武一郞. 通用热耦合精馏塔的制控系统的评估[J]. CIESC Journal, 2000, 8(4): 339 -346 .
[9] 王兆林, 陈伟, 阳永荣, 戎顺熙. Adsorption Equilibrium of Volatile in Condensed ModePolyethylene Process[J]. CIESC Journal, 2000, 8(1): 41 -45 .
[10] 郝小龙, 周明华, 俞汉青, 沈琴琴, 雷乐成. 钠盐浓度对厌氧产氢颗粒污泥从蔗糖中产氢的影响[J]. CIESC Journal, 2006, 14(4): 511 -517 .