化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3537-3544.DOI: 10.11949/0438-1157.20190311
收稿日期:
2019-04-01
修回日期:
2019-06-19
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
翟晓强
作者简介:
张宇轩(1995—),男,硕士研究生,基金资助:
Yuxuan ZHANG(),Xiaoqiang ZHAI()
Received:
2019-04-01
Revised:
2019-06-19
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xiaoqiang ZHAI
摘要:
感温变色建筑涂料在降低建筑冷热负荷、改善城市热环境方面具有很大的应用潜力。为了探究感温变色材料光学性能的影响因素,优化材料配方,首先制备了12种不同配方,变色温度为31℃的感温变色涂料,并分析了金红石型TiO2质量百分含量对涂料光谱反射率和太阳光反射比的影响,研究表明涂料光谱反射率均随着TiO2含量的增加而提高,感温变色粉最佳质量分数5%,TiO2的最佳质量分数应在5%~10%之间,此时浅色态的反射比比深色态高0.2以上。同时探究了TiO2粒径对涂料在不同波段反射率的影响,结果表明,在紫外和除红光外的可见光波段,感温变色涂料的反射率基本上随TiO2粒径的增大而减小;在红光和近红外波段,感温变色涂料反射率基本上随TiO2粒径的增大而增大。
中图分类号:
张宇轩, 翟晓强. 感温变色建筑涂料的制备及光谱反射性能实验研究[J]. 化工学报, 2019, 70(9): 3537-3544.
Yuxuan ZHANG, Xiaoqiang ZHAI. Development and spectral reflectance analysis of thermochromic coatings for buildings[J]. CIESC Journal, 2019, 70(9): 3537-3544.
实验组 | TiO2质量分数/% | TCM质量分数/% |
---|---|---|
1 | 0 | 5 |
2 | 5 | 5 |
3 | 10 | 5 |
4 | 15 | 5 |
5 | 0 | 10 |
6 | 5 | 10 |
7 | 10 | 10 |
8 | 15 | 10 |
9 | 0 | 15 |
10 | 5 | 15 |
11 | 10 | 15 |
12 | 15 | 15 |
表1 各实验组TiO2和TCM质量分数
Table 1 Mass fractions of TiO2 and TCM for each sample
实验组 | TiO2质量分数/% | TCM质量分数/% |
---|---|---|
1 | 0 | 5 |
2 | 5 | 5 |
3 | 10 | 5 |
4 | 15 | 5 |
5 | 0 | 10 |
6 | 5 | 10 |
7 | 10 | 10 |
8 | 15 | 10 |
9 | 0 | 15 |
10 | 5 | 15 |
11 | 10 | 15 |
12 | 15 | 15 |
样品 | 5%TCM | 10%TCM | 15%TCM | |||
---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |
0%TiO2 | | | | | | |
5%TiO2 | | | | | | |
10%TiO2 | | | | | | |
15%TiO2 | | | | | | |
表2 各组感温变色涂料样品变色前后比较
Table 2 Comparison of samples in colored phase and colorless phase
样品 | 5%TCM | 10%TCM | 15%TCM | |||
---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |
0%TiO2 | | | | | | |
5%TiO2 | | | | | | |
10%TiO2 | | | | | | |
15%TiO2 | | | | | | |
样品 | 太阳反射比 | 反射比变化 | ||
---|---|---|---|---|
深色态 | 浅色态 | |||
5%TCM | 0%TiO2 | 0.43 | 0.55 | 0.12 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.55 | 0.77 | 0.22 | |
15%TiO2 | 0.62 | 0.78 | 0.16 | |
10%TCM | 0%TiO2 | 0.41 | 0.54 | 0.13 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.65 | 0.81 | 0.16 | |
15%TCM | 0%TiO2 | 0.43 | 0.56 | 0.13 |
5%TiO2 | 0.50 | 0.72 | 0.22 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.64 | 0.82 | 0.18 |
表3 各样品变色前后太阳反射比
Table 3 Solar reflectance of samples in colored and colorless phase
样品 | 太阳反射比 | 反射比变化 | ||
---|---|---|---|---|
深色态 | 浅色态 | |||
5%TCM | 0%TiO2 | 0.43 | 0.55 | 0.12 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.55 | 0.77 | 0.22 | |
15%TiO2 | 0.62 | 0.78 | 0.16 | |
10%TCM | 0%TiO2 | 0.41 | 0.54 | 0.13 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.65 | 0.81 | 0.16 | |
15%TCM | 0%TiO2 | 0.43 | 0.56 | 0.13 |
5%TiO2 | 0.50 | 0.72 | 0.22 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.64 | 0.82 | 0.18 |
样品 | 全光谱波段太阳反射比 | 全光谱波段太阳反射比变化 | 紫外波段太阳反射比 | 紫外波段太阳反射比变化 | 可见光波段太阳反射比 | 可见光波段太阳反射比变化 | 近红外波段太阳反射比 | 近红外波段太阳反射比变化 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |||||
25 nm TiO2 | 0.59 | 0.77 | 0.18 | 0.1 | 0.15 | 0.05 | 0.48 | 0.82 | 0.34 | 0.77 | 0.78 | 0.01 |
60 nm TiO2 | 0.55 | 0.77 | 0.22 | 0.07 | 0.19 | 0.12 | 0.4 | 0.81 | 0.41 | 0.77 | 0.78 | 0.01 |
100 nm TiO2 | 0.56 | 0.74 | 0.18 | 0.06 | 0.2 | 0.14 | 0.4 | 0.74 | 0.34 | 0.79 | 0.8 | 0.01 |
200 nm TiO2 | 0.56 | 0.7 | 0.14 | 0.06 | 0.2 | 0.14 | 0.4 | 0.66 | 0.26 | 0.8 | 0.81 | 0.01 |
400 nm TiO2 | 0.57 | 0.7 | 0.13 | 0.08 | 0.18 | 0.1 | 0.41 | 0.66 | 0.25 | 0.8 | 0.81 | 0.01 |
表4 各样品不同波段太阳光反射比
Table 4 Reflectance of thermochromic coating samples in different bands
样品 | 全光谱波段太阳反射比 | 全光谱波段太阳反射比变化 | 紫外波段太阳反射比 | 紫外波段太阳反射比变化 | 可见光波段太阳反射比 | 可见光波段太阳反射比变化 | 近红外波段太阳反射比 | 近红外波段太阳反射比变化 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |||||
25 nm TiO2 | 0.59 | 0.77 | 0.18 | 0.1 | 0.15 | 0.05 | 0.48 | 0.82 | 0.34 | 0.77 | 0.78 | 0.01 |
60 nm TiO2 | 0.55 | 0.77 | 0.22 | 0.07 | 0.19 | 0.12 | 0.4 | 0.81 | 0.41 | 0.77 | 0.78 | 0.01 |
100 nm TiO2 | 0.56 | 0.74 | 0.18 | 0.06 | 0.2 | 0.14 | 0.4 | 0.74 | 0.34 | 0.79 | 0.8 | 0.01 |
200 nm TiO2 | 0.56 | 0.7 | 0.14 | 0.06 | 0.2 | 0.14 | 0.4 | 0.66 | 0.26 | 0.8 | 0.81 | 0.01 |
400 nm TiO2 | 0.57 | 0.7 | 0.13 | 0.08 | 0.18 | 0.1 | 0.41 | 0.66 | 0.25 | 0.8 | 0.81 | 0.01 |
1 | Santamouris M , Synnefa A , Karlessi T . Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions[J]. Solar Energy, 2011, 85(12): 3085-3102. |
2 | Dimoudi A , Zoras S , Kantzioura A , et al . Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece[J]. Sustainable Cities and Society, 2014, 13: 89-96. |
3 | Garshasbi S , Santamouris M . Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating[J]. Solar Energy Materials and Solar Cells, 2019, 191: 21-32. |
4 | Gago E J , Roldan J , Pacheco-Torres R , et al . The city and urban heat islands: a review of strategies to mitigate adverse effects[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 749-758. |
5 | Chang Y H , Huang P H , Wu B Y , et al . A study on the color change benefits of sustainable green building materials[J]. Construction and Building Materials, 2015, 83: 1-6. |
6 | Akbari H , Cartalis C , Kolokotsa D , et al . Local climate change and urban heat island mitigation techniques–the state of the art[J]. Journal of Civil Engineering and Management, 2016, 22(1): 1-16. |
7 | Santamouris M . Regulating the damaged thermostat of the cities—status, impacts and mitigation challenges[J]. Energy and Buildings, 2015, 91: 43-56. |
8 | Alchapar N L , Correa E N , Canton M A . Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones[J]. Energy Build, 2013, 69: 22-32. |
9 | Baniassadi A , Sailor D J , Crank P J , et al . Direct and indirect effects of high-albedo roofs on energy consumption and thermal comfort of residential buildings[J]. Energy and Buildings, 2018, 178: 71-83. |
10 | Giridharan R , Emmanuel R . The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review[J]. Sustainable Cities and Society, 2018, 40: 677-687. |
11 | Revel G M , Martarelli M , Emiliani M , et al . Cool products for building envelope(Ⅰ): Development and lab scale testing[J]. Solar Energy, 2014, 105: 770-779. |
12 | 张宇轩, 翟晓强 . 缓解城市热岛效应的策略及其研究进展[J]. 建筑科学, 2017, (12): 142-151. |
Zhang Y X , Zhai X Q . Research on strategies to mitigate urban heat island[J]. Building Science, 2017, (12): 142-151. | |
13 | Synnefa A , Santamouris M , Akbari H . Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions[J]. Energy and Buildings, 2007, 39(11): 1167-1174. |
14 | Granqvist C G . Recent progress in thermochromics and electrochromics: a brief survey[J]. Thin Solid Films, 2016, 614: 90-96. |
15 | Kanu S S , Binions R . Thin films for solar control applications[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 466(2113): 19-44. |
16 | Granqvist C G , Green S , Niklasson G A , et al . Advances in chromogenic materials and devices[J]. Thin Solid Films, 2010, 518(11): 3046-3053. |
17 | Kamalisarvestani M , Saidur R , Mekhilef S , et al . Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 353-364. |
18 | Baetens R , Jelle B P , Gustavsen A . Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 87-105. |
19 | Cao X , Jin P , Luo H . VO2-based thermochromic materials and applications: flexible foils and coated glass for energy building efficiency[M]//Nanotechnology in Eco-efficient Construction. Woodhead Publishing, 2019: 503-524. |
20 | Tällberg R , Jelle B P , Loonen R , et al . Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109828. |
21 | Ke Y , Zhou C , Zhou Y , et al . Emerging thermal-responsive materials and integrated techniques targeting the energy‐efficient smart window application[J]. Advanced Functional Materials, 2018, 28(22): 1800113. |
22 | Ma Y P . Research on the preparation of reversibly thermochromic cement based material at normal temperature[J]. Journal of Building Materials, 2006, 9(6): 700-704. |
23 | Ma Y , Zhang X , Zhu B , et al . Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings[J]. Solar Energy, 2002, 72(6): 511-520. |
24 | Karlessi T , Santamouris M , Apostolakis K , et al . Development and testing of thermochromic coatings for buildings and urban structures[J]. Solar Energy, 2009, 83(4): 538-551. |
25 | Hu J , Wanasekara N , Yu X . Thermal properties of thermochromic asphalt binders by modulated differential scanning calorimetry[J]. Transportation Research Record, 2014, 2444(1): 142-150. |
26 | Zheng S , Xu Y , Shen Q , et al . Preparation of thermochromic coatings and their energy saving analysis[J]. Solar Energy, 2015, 112(112): 263-271. |
27 | Park B , Krarti M . Energy performance analysis of variable reflectivity envelope systems for commercial buildings[J]. Energy and Buildings, 2016, 124: 88-98. |
28 | Garshasbi S , Santamouris M . Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating[J]. Solar Energy Materials and Solar Cells, 2019, 191: 21-32. |
29 | Karlessi T , Santamouris M . Improving the performance of thermochromic coatings with the use of UV and optical filters tested under accelerated aging conditions[J]. International Journal of Low-Carbon Technologies, 2013, 10(1): 45-61. |
30 | 周小雯 . 太阳吸收比的计算方法[C]//2011中国太阳能热利用行业年会暨高峰论坛. 西安: 中国农村能源行业协会太阳能热利用专业委员会, 中国节能协会太阳能专业委员会, 中国太阳能热利用产业联盟, 2011. |
Zhou X W . The calculation method of solar absorptance[C]//2011 China Solar Thermal Utilization Industry Annual Conference. Xi’an: China Rural Energy Industry Association Solar Thermal Utilization Professional Committee, China Energy Conservation Association Solar Professional Committee, China Solar Thermal Utilization Industry Alliance, 2011. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[5] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[6] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[7] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[8] | 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110. |
[9] | 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
[10] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
[11] | 王洁冰, 高金彤, 徐震原. 基于不同类型溶液蒸气压特性的太阳能界面蒸发实验研究[J]. 化工学报, 2022, 73(2): 663-671. |
[12] | 陈雪梅, 王彤, 高玉箔, 彭鼎程, 罗雨婷. 利用激光诱导石墨烯实现高效太阳能界面蒸发[J]. 化工学报, 2022, 73(12): 5648-5659. |
[13] | 张欣宇, 杨晓宏, 张燕楠, 徐佳锟, 郭枭, 田瑞. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409. |
[14] | 张怡洁, 刘星, 陈振武, 张晓春, 周勇, 丘建栋, 顾文波, 马涛. 分布式光伏储能系统的设计方法及运行特性[J]. 化工学报, 2021, 72(S1): 503-511. |
[15] | 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||