化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2317-2327.doi: 10.11949/0438-1157.20201182

• 材料化学工程与纳米技术 • 上一篇    下一篇

硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能

张锐(),邵琦,张华宇,金泽龙,张小亮()   

  1. 江西师范大学化学化工学院,江西 南昌 330022
  • 收稿日期:2020-08-19 修回日期:2020-09-18 出版日期:2021-04-05 发布日期:2021-04-05
  • 通讯作者: 张小亮 E-mail:rzhang2018@126.com;xlzhang@jxnu.edu.cn
  • 作者简介:张锐(1996—),男,硕士研究生,rzhang2018@126.com
  • 基金资助:
    国家自然科学基金项目(21766011);江西省主要学科学术和技术带头人培养计划(20204BCJL22042)

Fabrication of boron-doped hybrid silica membranes for pervaporation desalination

ZHANG Rui(),SHAO Qi,ZHANG Huayu,JIN Zelong,ZHANG Xiaoliang()   

  1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
  • Received:2020-08-19 Revised:2020-09-18 Published:2021-04-05 Online:2021-04-05
  • Contact: ZHANG Xiaoliang E-mail:rzhang2018@126.com;xlzhang@jxnu.edu.cn

摘要:

以1,2-双(三乙氧基硅基)乙烷(BTESE)和硼酸为前体,通过溶胶-凝胶法制备了硼掺杂的二氧化硅(B-BTESE-SiO2)杂化膜。采用FTIR、XRD、XPS、TEM、SEM等系列表征手段对合成溶胶及膜的结构和形貌进行了分析,结果表明:硼元素成功掺杂进入SiO2骨架中,形成了水热稳定的B—O—Si键,能明显影响膜表面的微观结构、亲疏水性、膜孔径大小从而提高膜的脱盐性能和稳定性。当溶胶中的H3BO3/BTESE比为0.25时所优化制备SiO2膜的亲水性最强,脱盐过程中活化能最低,传质阻力最小,膜孔径约为0.61 nm,故表现出最佳的脱盐性能。在60℃以3.5%(质量) NaCl溶液为进料液时,该膜的水通量高达16.5 kg·m-2·h-1,盐截留率近乎100%,并且表现出优异的长时间稳定性(>168 h)和高浓度盐水溶液[4.2%~15.0%(质量) NaCl]脱盐性能,在海水淡化和高盐废水处理等领域具有潜在的应用前景。

关键词: 二氧化硅, 膜, 脱盐, 水热稳定性, 活化能, 高盐废水

Abstract:

Using 1, 2-bis(triethoxysilyl)ethane (BTESE) and boric acid as precursors, a boron-doped silica (B-BTESE- SiO2) hybrid membrane was successfully prepared by the sol-gel method. The boron element was confirmed to be successfully doped into silica frameworks during the sol-gel procedure by various characterizations of FTIR, XRD, XPS, TEM and SEM, which would form hydrothermally stable Si—O—B bonds. It could significantly influence membrane surface microstructure, hydrophilicity and pore size of B-BTESE-SiO2 hybrid membranes, and then improve their desalination performance and stability. The B-BTESE-SiO2 membranes prepared under the optimized condition of H3BO3/BTESE ratio as 0.25 in the sols, exhibited the strongest hydrophilicity, lowest mass transfer resistance (lowest activation energy during desalination process) and applicable pore size of 0.61 nm, thus demonstrating the highest desalination performance. The high water flux up to 16.5 kg·m-2·h-1 and NaCl rejection of nearly 100% were achieved for this SiO2 membrane towards 3.5%(mass) NaCl feed solution at 60℃. Moreover, this membrane showed excellent long-term stability (>168 h) and desalination performance for high-salinity [4.2%—15.0%(mass) NaCl] solutions, which had promising potential applications in seawater desalination and high-salinity wastewater treatment.

Key words: silica, membrane, desalination, hydrothermal stability, activation energy, high-salinity wastewater

中图分类号: 

  • TQ 028.8

图1

B-BTESE-SiO2溶胶合成示意图"

图2

B-BTESE-SiO2溶胶的粒径分布"

图3

B-BTESE-SiO2凝胶粉末的红外光谱"

图4

B-BTESE-0.25 SiO2凝胶粉末的XPS谱图"

图5

B-BTESE-SiO2凝胶粉末的XRD谱图"

图6

B-BTESE-0.25 SiO2凝胶粉末的TEM图和SAED图(插图)"

图7

B-BTESE-SiO2杂化膜的表面和截面SEM图"

图8

硼掺杂量对SiO2杂化膜的脱盐性能的影响"

图9

B-BTESE-SiO2杂化膜的水接触角"

图10

B-BTESE-SiO2杂化膜的渗透通量[(a),(b)]和渗透率[(c)、(d)]与温度的Arrhenius关系曲线"

表1

B-BTESE-SiO2杂化膜渗透汽化脱盐过程的活化能"

MembraneEj/(kJ·mol-1)Ep/(kJ·mol-1)(Ej-Ep)/(kJ·mol-1)
pure H2O3.5%(质量) NaClpure H2O3.5%(质量) NaClpure H2O3.5%(质量) NaCl
BTESE16.57±2.1818.23±1.85-26.64±2.10-24.99±1.8643.2143.22
B-BTESE-0.0513.80±1.5717.40±1.74-29.42±1.58-25.82±1.7743.2243.22
B-BTESE-0.1312.83±1.6117.04±1.90-30.39±1.38-26.18±1.4143.2243.22
B-BTESE-0.2510.71±1.5414.27±1.40-32.50±1.38-28.95±1.4143.2143.22
B-BTESE-0.5019.44±0.6419.00±1.10-23.73±0.35-24.22±1.3943.1743.22
B-BTESE-1.0019.98±2.8020.02±1.80-23.24±2.75-23.20±1.7443.2243.22

图11

B-BTESE-0.25 SiO2粉末的N2吸附-脱附曲线及其孔径分布"

图12

B-BTESE-0.25杂化膜在60℃时于不同浓度NaCl溶液中的脱盐性能"

图13

BTESE和B-BTESE-0.25杂化膜的稳定性"

表2

SiO2膜渗透汽化脱盐性能比较"

Membranec(NaCl)/%(mass)T/℃J/(kg·m-2·h-1)P/(mol·m-2·s-1·Pa-1)Rej/%Ref.
PVA/SiO20.26020.616×10-699[30]
BTESEthy-SiO20.27014.27×10-699.6[31]
PVA/SiO23.56012.39.7×10-699.9[32]
ES40-SiO23.56017.814.1×10-699[33]
Co-TEOS-SiO23.56011.39.7×10-699.9[27]
Ni/TEOS-SiO23.5252.523.9×10-697[34]
La25Y75-BTESE-SiO23.56015.612.4×10-699.9[10]
P123/TEOS-SiO23.56086.9×10-699.9[35]
CTAB/SiO24252.612.9×10-699.9[36]
P123/TEOS-TEVS-SiO215609.28.7×10-698.6[37]
B-BTESE-SiO20.36024.519×10-6100本工作
B-BTESE-SiO23.56016.513.1×10-6100本工作
B-BTESE-SiO215609.68.4×10-699.9本工作
1 Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018.
2 Lin S H. Energy efficiency of desalination: fundamental insights from intuitive interpretation[J]. Environmental Science & Technology, 2020, 54(1): 76-84.
3 Yang Z, Ma X H, Tang C Y. Recent development of novel membranes for desalination[J]. Desalination, 2018, 434: 37-59.
4 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1): 1-14.
Gao C J, Zhou Y, Liu L F. Recent development and prospect of seawater reverse osmosis desalination technology[J]. Journal of Ocean Technology, 2016, 35(1): 1-14.
5 葛亮, 伍斌, 王鑫, 等. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763.
Ge L, Wu B, Wang X, et al. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763.
6 Wang Q Z, Li N, Bolto B, et al. Desalination by pervaporation: a review[J]. Desalination, 2016, 387: 46-60.
7 Selim A, Toth A J, Haaz E, et al. Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance[J]. Separation and Purification Technology, 2019, 221: 201-210.
8 Cao Z S, Zeng S X, Xu Z, et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Science Advances, 2018, 4(11): eaau8634.
9 Cho C H, Oh K Y, Kim S K, et al. Pervaporative seawater desalination using NaA zeolite membrane: mechanisms of high water flux and high salt rejection[J]. Journal of Membrane Science, 2011, 371(1/2): 226-238.
10 Zhang H Y, Wen J L, Shao Q, et al. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination[J]. Journal of Membrane Science, 2019, 584: 353-363.
11 Qian X W, Li N, Wang Q Z, et al. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation[J]. Desalination, 2018, 438: 83-96.
12 Liu G Z, Shen J, Liu Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science, 2018, 548: 548-558.
13 Kanezashi M, Yada K, Yoshioka T, et al. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability[J]. Journal of the American Chemical Society, 2009, 131(2): 414-415.
14 Elma M, Yacou C, Wang D K, et al. Microporous silica based membranes for desalination[J]. Water, 2012, 4(3): 629-649.
15 Wijaya S, Duke M C, Diniz da Costa J C. Carbonised template silica membranes for desalination[J]. Desalination, 2009, 236(1/2/3): 291-298.
16 Yamamoto K, Muragishi H, Mizumo T, et al. Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation[J]. Separation and Purification Technology, 2018, 207: 370-376.
17 Xu R, Ibrahim S M, Kanezashi M, et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9357-9364.
18 Qureshi H F, Besselink R, Elshof J E, et al. Doped microporous hybrid silica membranes for gas separation[J]. Journal of Sol-Gel Science and Technology, 2015, 75(1): 180-188.
19 Zheng F T, Yamamoto K, Kanezashi M, et al. Preparation of bridged silica RO membranes from copolymerization of bis(triethoxysilyl)ethene/(hydroxymethyl)triethoxysilane. Effects of ethenylene-bridge enhancing water permeability[J]. Journal of Membrane Science, 2018, 546: 173-178.
20 Castricum H L, Kreiter R, van Veen H M, et al. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability[J]. Journal of Membrane Science, 2008, 324(1/2): 111-118.
21 Song H T, Wei Y B, Qi H. Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters[J]. Journal of Materials Chemistry A, 2017, 5(47): 24657-24666.
22 Niimi T, Nagasawa H, Kanezashi M, et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation[J]. Journal of Membrane Science, 2014, 455: 375-383.
23 Qi H, Han J, Xu N P. Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane[J]. Journal of Membrane Science, 2011, 382(1/2): 231-237.
24 Zhang Q H, Gu J L, Chen G Q, et al. Durable flame retardant finish for silk fabric using boron hybrid silica sol[J]. Applied Surface Science, 2016, 387: 446-453.
25 Sorarù G D, Dallabona N, Gervais C, et al. Organically modified SiO2-B2O3 gels displaying a high content of borosiloxane (B—O—Si) bonds[J]. Chemistry of Materials, 1999, 11(4): 910-919.
26 Ivanova Y, Vueva Y, Fernandes M H F V. Si—O—C—B amorphous materials from organic-inorganic hybrid precursors[J]. Journal of the University of Chemical Technology and Metallurgy, 2006, 41(4): 417-422.
27 Elma M, Wang D K, Yacou C, et al. High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications[J]. Desalination, 2015, 365: 308-315.
28 Wu D H, Gao A R, Zhao H T, et al. Pervaporative desalination of high-salinity water[J]. Chemical Engineering Research and Design, 2018, 136: 154-164.
29 Halakoo E, Feng X S. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation[J]. Separation and Purification Technology, 2020, 234: 116077.
30 Chaudhri S G, Chaudhari J C, Singh P S. Fabrication of efficient pervaporation desalination membrane by reinforcement of poly(vinyl alcohol)-silica film on porous polysulfone hollow fiber[J]. Journal of Applied Polymer Science, 2018, 135(3): 45718.
31 Xu R, Lin P, Zhang Q, et al. Development of ethenylene-bridged organosilica membranes for desalination applications[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2183-2190.
32 Reino Olegário da Silva D A, Bosmuler Zuge L C, de Paula Scheer A. Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation[J]. Separation and Purification Technology, 2020, 247: 116852.
33 Wang S N, Wang D K, Motuzas J, et al. Rapid thermal treatment of interlayer-free ethyl silicate 40 derived membranes for desalination[J]. Journal of Membrane Science, 2016, 516: 94-103.
34 Darmawan A, Karlina L, Astuti Y, et al. Structural evolution of nickel oxide silica sol-gel for the preparation of interlayer-free membranes[J]. Journal of Non-Crystalline Solids, 2016, 447: 9-15.
35 Elma M, Wang D K, Yacou C, et al. Interlayer-free P123 carbonised template silica membranes for desalination with reduced salt concentration polarisation[J]. Journal of Membrane Science, 2015, 475: 376-383.
36 Singh P S, Chaudhri S G, Kansara A M, et al. Cetyltrimethylammonium bromide-silica membrane for seawater desalination through pervaporation[J]. Bulletin of Materials Science, 2015, 38(2): 565-572.
37 Yang H, Elma M, Wang D K, et al. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation[J]. Journal of Membrane Science, 2017, 523: 197-204.
[1] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[2] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[3] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[4] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[5] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[6] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[7] 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493.
[8] 郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815.
[9] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[10] 张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
[11] 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J]. 化工学报, 2021, 72(8): 4267-4278.
[12] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
[13] 徐子昂, 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906.
[14] 赵岩, 李秀萍, 赵荣祥. 苯酚型低共熔溶剂中硫酸钛作为催化剂高效氧化脱硫[J]. 化工学报, 2021, 72(8): 4391-4400.
[15] 姚彦虎, 杨晨, 张兵, 吴永红, 王同华. 基于TiO2溶胶杂化的分子筛炭膜制备及其结构与性能[J]. 化工学报, 2021, 72(8): 4418-4424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙怀宇,伍沅, 徐成海. 浸没循环撞击流反应器内的压力波动[J]. CIESC Journal, 2006, 14(4): 428 -434 .
[2] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[3] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[4] 陈启石, 冯霄. 考虑环境影响最小化的反应过程的开发[J]. CIESC Journal, 2003, 11(5): 611 -615 .
[5] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[6] 吴元欣, 罗湘华, 陈启明, 李定或, 李世荣, M.H. Al-Dahhan, M.P. Dudukovic. 用人工神经网络方法预测鼓泡塔气含率[J]. CIESC Journal, 2003, 11(2): 162 -165 .
[7] HunYong SHIN, Hwayong KIM, Ki-Pung YOO, ChulSoo LEE, Yoshio IWAI, Yasuhiko ARAI. EOS状态下基于多相流有规栅格理论的水-碳氢化合物两相体系的临界轨迹关系[J]. CIESC Journal, 2002, 10(6): 661 -665 .
[8] 谢方友, 朱明乔, 刘建青, 何潮洪. 在脉冲填料柱中萃取硫酸铵溶液中的己内酰胺[J]. CIESC Journal, 2002, 10(6): 677 -680 .
[9] 洪定一. 化工进展——中国石化工业回顾[J]. CIESC Journal, 2001, 9(3): 229 -234 .
[10] 周理, 王怡琳, 陈海华, 周亚平. 天然气管网吸附调峰可行性的模拟研究[J]. CIESC Journal, 2002, 10(6): 653 -656 .