化工学报 ›› 2017, Vol. 68 ›› Issue (2): 732-738.doi: 10.11949/j.issn.0438-1157.20160930

• 分离工程 • 上一篇    下一篇

聚偏氟乙烯纳米多孔膜结构调控及离子传递特性

李冰洋, 刘珍豪, 王保国   

  1. 化学工程联合国家重点实验室, 清华大学, 北京 100084
  • 收稿日期:2016-07-04 修回日期:2016-10-25 出版日期:2017-02-05 发布日期:2017-02-05
  • 通讯作者: 王保国 E-mail:bgwang@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(21276134)。

Structure regulation and ion transport characteristics of polyvinylidene fluoride nanoporous membranes

LI Bingyang, LIU Zhenhao, WANG Baoguo   

  1. State Key Laboratory of Chemical Engineering, Tsinghua University, Beijng 100084, China
  • Received:2016-07-04 Revised:2016-10-25 Published:2017-02-05 Online:2017-02-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21276134).

摘要:

在纳微米尺度调控膜孔结构对发展高性能膜分离材料具有重要意义。使用半结晶性高分子材料聚偏氟乙烯(PVDF),利用非溶剂诱导相分离(NIPS)、蒸汽诱导相分离(VIPS)、溶剂蒸发诱导相分离(EIPS)方法,成功制备了不同形貌的多孔膜。提出了根据聚合物的结晶生长机制调控膜孔结构概念,根据溶剂蒸发时间调控结晶生长。利用SEM和BET对膜孔形貌进行表征,XRD和DSC对结晶进行检测,氢离子(H+)和四价钒离子(VO2+)以及其他常用离子的扩散系数表征传质特性。在溶剂蒸发诱导结晶的过程中,随着溶剂蒸发时间的延长,膜断面的球晶比例逐渐增加,最后至球晶完全融合,膜孔结构发生了显著变化,且膜的结晶度和结晶形态随之发生变化,离子选择性能随膜孔尺寸减小而逐渐增大。

关键词: 膜, 结晶, 聚偏氟乙烯, 结构调控, 离子选择性

Abstract:

A series of polyvinylidene fluoride (PVDF) porous membranes with different pore structures were prepared from PVDF and sodium allyl sulfonate (SAS) via various phase inversion methods, such as non-solvent induced phase separation (NIPS), vapor induced phase separation (VIPS), and solvent evaporation induced phase separation (EIPS). A concept for membrane structure regulation was proposed on the basis of growth mechanism of polymer crystalline which controlled crystal growth by solvent evaporation time. The membrane was characterized by scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET), X-ray diffraction (XRD), differential scanning calorimetry (DSC), as well as permeability of protons (H+), tetravalent vanadium ions (VO2+), and other ions. With the increase of solvent evaporation time, spherulites in cross-sectioned membrane was increased gradually till all spherulites grew into each other, such that membrane porous structure changed significantly as well as membrane crystalline percentage and morphology were altered. The decreased membrane pore size improved selectivity for H+ relative to VO2+ from 12 to 73, which demonstrated high separation properties of the naonporous membrane.

Key words: membrane, crystallization, polyvinylidene fluoride, structure regulation, ion selectivity

中图分类号: 

  • TM911
[1] GUILLEN G R, PAN Y, LI M, et al. Preparation and characterization of membranes formed by non-solvent induced phase separation:a review[J]. Industrial & Engineering Chemistry Research, 2011, 50(7):3798-3817.
[2] 吕晓龙, 武春瑞, 张昊, 等. NIPS法聚偏氟乙烯超滤膜的制备与应用[J]. 中国工程科学, 2014, 16(12):35-45. LÜ X L, WU C R, ZHANG H, et al. Preparation and application of polyvinylidene fluoride ultrafiltration membranes by non-solovent induced phase inversion method[J]. Engineering Sciences, 2014, 16(12):35-45.
[3] CUI Z, DRIOLI E, LEE Y M. Recent progress in fluoropolymers for membranes[J]. Progress in Polymer Science, 2014, 39(1):164-198.
[4] KANG G D, CAO Y M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes-a review[J]. J. Membrane Sci., 2014, 463:145-165.
[5] 唐元晖, 林亚凯, 李倩, 等. 热致相分离法聚偏氟乙烯膜的制备及应用[J]. 膜科学与技术, 2015, 35(2):98-107. TANG Y H, LIN Y K, LI Q, et al. Preparation and application of polyvinylidene fluoride membrane via thermally induced phase separation[J]. Membrane Science and Technology, 2015, 35(2):98-107.
[6] KIM J F, KIM J H, LEE Y M, et al. Thermally induced phase separation and electrospinning methods for emerging membrane applications:a review[J]. AIChE Journal, 2016, 62(2):461-490.
[7] JUNG J T, KIM J F, WANG H H, et al. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)[J]. J. Membrane Sci., 2016, 514(15):250-263.
[8] FU L, MIMI T, LIXIN X. PVDF membranes with inter-connected pores prepared via a Nat-ips process[J]. Desalination, 2012, 198:99-105.
[9] VENAULT A, CHANG Y, WANHG D M, et al. A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process[J].Polymer Reviews, 2013, 53(4):568-626.
[10] VENAULT A, CHANG Y. Surface hydrophilicity and morphology control of anti-biofouling polysulfone membranes via vapor-induced phase separation processing[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(4):2656-2666.
[11] 韩华, 彭跃莲, 刘晓娟. 聚偏氟乙烯杂化微孔膜的疏水性研究[J]. 膜科学与技术, 2009, 29(4):57-63. HAN H, PENG Y L, LIU X J. Research on the hydrophobicity of poly(vinylidene fluoride)hybrid microporous membrane[J]. Membrane Science and Technology, 2009, 29(4):57-63.
[12] LI C L, WANG D M, DERATANI A, et al. Insight into the preparation of poly(vinylidene fluoride) membranes by vapor-induced phase separation[J]. J. Membrane Sci., 2010, 361(1/2):154-166.
[13] ALTINKAYA S A, YENAL H, OZBAS B. Membrane formation by dry-cast process[J]. J. Membrane Sci., 2005, 249(1/2):163-172.
[14] DAYAL P, KYU T. Porous fiber formation in polymer-solvent system undergoing solvent evaporation[J]. Journal of Applied Physics, 2006, 100(4):043512.
[15] ZHANG H, ZHANG H, LI X, et al. Nanofiltration (NF) membranes:the next generation separators for all vanadium redox flow batteries (VRBs)?[J]. Energy & Environmental Science, 2011, 4(5):1676-1679.
[16] LI Y, ZHANG H, LI X, et al. Porous poly (ether sulfone) membranes with tunable morphology:fabrication and their application for vanadium flow battery[J]. Journal of Power Sources, 2013, 233:202-208.
[17] ONG Y K, WIDJOJO N, CHUNG T S. Fundamentals of semi-crystalline poly(vinylidene fluoride) membrane formation and its prospects for biofuel (ethanol and acetone) separation via pervaporation[J]. J. Membrane Sci., 2011, 378(1/2):149-162.
[18] RUPP B. Origin and use of crystallization phase diagrams[J]. Acta Crystallographica. Section F. Structural Biology Communications, 2015, 71(3):247-260.
[19] BRUCE D, HARESH K, JEAN-MARIE T. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(18):928-935.
[20] LI X, ZHANG H, MAI Z, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4):1147-1160.
[21] PARASURAMAN, LIM T M, MENICTAS C, et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta, 2013, 101:27-40.
[22] DING H, ZHANG X, LI T, et al. Vanadium flow battery for energy storage:prospects and challenges[J]. The Journal of Physical Chemistry Letters, 2013, 4(8):1281-1294.
[23] KIM S, TIGHE T, SCHWENZER B, et al. Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries[J]. Journal of Applied Electrochemistry, 2011, 41(10):1201-1213.
[24] NAKAGAWA K, ISHIDA Y. Annealing effects in poly(viny1idene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy[J]. Journal of Polymer Science:Polymer Physics Edition, 1973, 11:2153-2171.
[25] BUONOMENNA M G, MACCHI P, DAVOLI M, et al. Poly(vinylidene fluoride) membranes by phase inversion:the role the casting and coagulation conditions play in their morphology, crystalline structure and properties[J]. European Polymer Journal, 2007, 43(4):1557-1572.
[26] SALIMI A, YOUSEFI A A. Conformational changes and phase transformation mechanisms in PVDF solution-cast films[J]. Journal of Polymer Science Part B:Polymer Physics, 2004, 42(18):3487-3495.
[1] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[2] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[3] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[4] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[5] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[6] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[7] 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493.
[8] 李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807.
[9] 于筱溪, 闫真真, 蒋其辉, 吴霞, 张余晓, 王晓娟, 黄方. 溴化1-辛基-3-甲基咪唑聚集状态对蛋白质结晶的影响研究[J]. 化工学报, 2021, 72(9): 4854-4860.
[10] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[11] 张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
[12] 朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092.
[13] 姚彦虎, 杨晨, 张兵, 吴永红, 王同华. 基于TiO2溶胶杂化的分子筛炭膜制备及其结构与性能[J]. 化工学报, 2021, 72(8): 4418-4424.
[14] 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J]. 化工学报, 2021, 72(8): 4267-4278.
[15] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PatrickPERRE. 硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型[J]. CIESC Journal, 2004, 12(6): 783 -791 .
[2] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[3] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[4] 冯霄, Robin Smith. 蒸发系统的热集成个案研究[J]. CIESC Journal, 2001, 9(2): 224 -227 .
[5] Tahir Imran Qureshi, Dong-Ik Song, Young-Woong Jeon, Young-Sup Lee . 十六烷基三甲基季铵阳离子改良二氧化硅对酸性染料的吸着[J]. CIESC Journal, 2002, 10(1): 102 -108 .
[6] 高习群, 马友光, 朱春英, 余国琮. 单泡吸收过程的界面传质机理[J]. CIESC Journal, 2006, 14(2): 158 -163 .
[7] 王淑梅, 于养信, 高光华. 气体透过碳膜的非平衡动力学模拟研究
[J]. CIESC Journal, 2006, 14(2): 164 -170 .
[8] 马永锡, 张红. 基于中心复合设计的振荡热管传热性能分析
[J]. CIESC Journal, 2006, 14(2): 223 -228 .
[9] 周笑鹏, 史清洪, 邢新会, 孙彦. 快速纯化在大肠杆菌中表达的增强型绿色荧光蛋白
[J]. CIESC Journal, 2006, 14(2): 229 -234 .
[10] 毛立新, 高翔, 张猛响, 金日光. 两步共混工艺制备聚碳酸酯/聚丙烯/针状硅酸盐三元纳米复合材料:降解与形态[J]. CIESC Journal, 2006, 14(2): 248 -252 .