化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 329-335.doi: 10.11949/0438-1157.20190597

• 能源和环境工程 • 上一篇    下一篇

无人机用燃料电池系统性能分析

万忠民(),全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠   

  1. 湖南理工学院机械工程学院,湖南 岳阳 414006
  • 收稿日期:2019-05-30 修回日期:2019-06-05 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 万忠民 E-mail:zhongminwan@hotmial.com
  • 作者简介:万忠民(1977—),男,博士,教授,zhongminwan@hotmial.com
  • 基金资助:
    国家自然科学基金项目(51676067);湖南省杰出青年基金项目(2018JJ1011)

Performance analysis of fuel cell system for unmanned aerial vehicle

Zhongmin WAN(),Wenxiang QUAN,Hanzhang YAN,Xi CHEN,Taiming HUANG,Yan ZHANG,Jing ZHANG,Xiangzhong KONG   

  1. College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
  • Received:2019-05-30 Revised:2019-06-05 Published:2019-09-06 Online:2019-09-06
  • Contact: Zhongmin WAN E-mail:zhongminwan@hotmial.com

摘要:

建立了无人机用质子交换膜燃料电池(PEMFC)动力系统性能随大气环境变化的数学模型,通过Matlab进行仿真,分析海拔高度对PEMFC系统运行状况和热力学性能的影响。结果显示: 随着高度的增加,系统输出电压、输出电功率及系统电效率呈下降趋势;当高度一定时,随着电流密度的增加,系统输出电功率有最大值,但电堆输出电压和系统输出电效率下降;氢气进气压力的增大使系统的输出电压、电功率和电效率逐渐增大;为了提高燃料电池系统在一定高度下的性能,需要选择合适的电流密度和较高的氢气进气压力。

关键词: 燃料电池, 无人机, 海拔高度, 动态仿真, 热力学性质

Abstract:

The biggest technical difficulty in developing small drones is to solve the problems of their power systems. In order to maintain the flight of aircraft, the power system of small drone also provides energy for the airborne equipment. Therefore, the unmanned aerial vehicle (UAV) power unit requires a small volume with high energy density, and can be easily and efficiently converted into thrust force. In this paper, proton exchange membrane fuel cell (PEMFC) is used as the power source candidate of the UAV. Based on the PEMFC stack model and the environmental model, numerical simulations were conducted by Matlab to investigate the effect of altitude on operation status and thermodynamic performance of PEMFC system. The results indicated that as the height increases, the variations of system output voltage, output electric power and system electrical efficiency exhibit a downward trend. When the height is constant, the output power of the system has the highest value with the rise of current density, but the output voltage of the stack and the output efficiency of the system decrease. Moreover, it has been found that the increase of the hydrogen inlet pressure intensifies the output voltage, electric power and electrical efficiency of the system. For the purpose of performance improvement of PEMFC system at a certain height, it is necessary to select a suitable current density and a high hydrogen inlet pressure.

Key words: fuel cells, unmanned aerial vehicle, altitude, dynamic simulation, thermodynamic properties

中图分类号: 

  • TM 911.4

图1

燃料电池系统结构"

表1

PEMFC电堆参数"

参数数值参数数值
单片燃料电池数量30氢气过量系数1.2
进气温度/K348氧气过量系数1.2
阳极进气压力/atm1~3电流密度/mA0~1000
阴极进气压力/atm1~3活化面积/cm2200

图2

不同电流密度下PEMFC输出电压随高度的变化"

图3

不同电流密度下PEMFC输出电功率随高度的变化"

图4

不同电流密度下PEMFC输出电效率随高度的变化"

图5

不同高度下PEMFC输出电功率随电流密度的变化"

图6

不同高度PEMFC输出电效率随电流密度的变化"

图7

不同高度PEMFC输出电压随电流密度的变化"

图8

不同氢气进气压力PEMFC输出电压随高度的变化"

图9

不同氢气进气压力PEMFC输出电功率随高度的变化"

图10

不同氢气进气压力下PEMFC输出电效率随高度的变化"

1 AustinR. Unmanned aircraft systems: UAVs design, development, and deployment[J]. Journal Publications Chestnet.Org., 2010, 79(50): 31-36.
2 PawY C, BalasG J. Development and application of an integrated framework for small UAV flight control development[J]. Mechatronics, 2011, 21(5): 789-802.
3 XieH, LynchA F, JagersandM. Dynamic IBVS of a rotary wing UAV using line features[J]. Robotica, 2016, 34(9): 2009-2026.
4 ZengY, ZhangR, LimT J. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42.
5 LarminieJ, DicksA. Fuel Cell Systems Explained[M]. 2nd ed. Wiley, 2003.
6 ChenH , PeiP , SongM . Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163.
7 WilberforceT , AlaswadA , PalumboA , et al. Advances in stationary and portable fuel cell applications[J]. International Journal of Hydrogen Energy, 2016, 41(37): 16509-16522.
8 汪飞杰, 杨代军, 张浩, 等. 1.5 kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386.
WangF J, YangD J, ZhangH, et al. Response features of a 1.5 kW proton exchange membrane fuel cell stack for dynamic cycle[J]. CIESC Journal, 2013, 64(4): 1380-1386.
9 MorenoN G, MolinaM C, GervasioD, et al. Approaches to polymer electrolyte membrane fuel cells and their cost[J]. Renewable & Sustainable Energy Reviews, 2015, 52: 897-906.
10 陈硕翼, 朱卫东, 张丽, 等. 氢能燃料电池技术发展现状与趋势[J]. 科技中国, 2018, 248(5): 17-19.
Chen S Y, Zhu W D, Zhang L, et al Technology development status and trends of hydrogen fuel cells[J]. Chinese Science and Technology, 2018, 248 (5): 17-19.
11 LeeB, ParkP, KimK, et al. Erratum to “The flight test and power simulations of an UAV powered by solar cells, a fuel cell and batteries”[J]. Journal of Mechanical Science & Technology, 2014, 28(3): 1137.
12 GongA, VerstraeteD. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21311-21333.
13 WrightS, PinkelmanA. Natural gas internal combustion engine hybrid passenger vehicle[J]. International Journal of Energy Research, 2010, 32(7): 612-622.
14 LeeB, ParkP, KimC, et al. Power managements of a hybrid electric propulsion system for UAVs[J]. Journal of Mechanical Science & Technology, 2012, 26(8): 2291-2299.
15 FonsecaR D, BideauxE, GerardM, et al. Control of PEMFC system air group using differential flatness approach: validation by a dynamic fuel cell system model[J]. Applied Energy, 2014, 113(6): 219-229.
16 BradleyT, MoffittB, ParekhD, et al. Flight test results for a fuel cell unmanned aerial vehicle[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nwvada: AIAA Journal, 2013.
17 BradleyT H, MoffittB A, FullerT F, et al. Comparison of design methods for fuel-cell-powered unmanned aerial vehicles[J]. Journal of Aircraft, 2015, 46(6): 1945-1956.
18 OkumusE , SanF G B , OkurO , et al. Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2691-2697.
19 ZhangX, LiuL, XuG. Energy management strategy of hybrid PEMFC-PV-battery propulsion system for low altitude UAVs[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016: 5109.
20 MoffittB A. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles[D]. Atlanta , US: Georgia Institute of Technology, 2010.
21 CorreaG, BorelloF, SantarelliM. Sensitivity analysis of temperature uncertainty in an aircraft PEM fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14745-14758.
22 BradleyT H, MoffittB A, MavrisD N, et al. Hardware-in-the-loop testing of a fuel cell aircraft powerplant[J]. Journal of Propulsion & Power, 2012, 25(6): 1336-1344.
23 SalehI M. Modelling, simulation and performance evaluation: PEM fuel cells for high altitude UAS[D]. Sheffield: Sheffield Hallam University, 2015.
24 LeeB, KwonS, ParkP, et al. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries[J]. Aerospace & Electronic Systems IEEE Transactions on, 2014, 50(4): 3167-3177.
25 卫东, 郑东, 褚磊民. 空冷型质子交换膜燃料电池堆最优性能输出控制 [J]. 化工学报, 2010, 61(5): 1293-1300.
WeiD, ZhengD, ChuL M. Output control of optimal performance for air-cooling PEMFC stack[J]. CIESC Journal, 2010, 61(5): 1293-1300.
26 WadeN, SmithS. Simulation of gas and water management strategies in PEM fuel cells for UAV power[C]// Meeting of the Aps Division of Fluid Dynamics. 2013.
27 李英, 周勤文, 张香平. 质子交换膜燃料电池稳态自增湿性能分析[J]. 化工学报, 2014, 65(5): 1893-1899.
LiY, ZhouQ W, ZhangX P. Numerical analysis of steady state self-humidification performance of PEMFC[J]. CIESC Journal, 2014, 65(5): 1893-1899.
28 KongI M, ChoiJ W, KimS I, et al. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer[J]. Applied Energy, 2015, 145: 345-353.
29 SrinivasanS , VelevO A , ParthasarathyA , et al. High energy efficiency and high power density proton exchange membrane fuel cells-electrode kinetics and mass transport[J]. Journal of Power Sources, 1991, 36(3): 299-320.
30 BenzigerJ B, SatterfieldM B, HogarthW H J, et al. The power performance curve for engineering analysis of fuel cells[J]. Journal of Power Sources, 2006, 155(2): 272-285.
31 XiaoS, XinL. Research on key technologies of standard atmosphere database[C]// Asia Simulation Conference-International Conference on System Simulation & Scientific Computing. 2008.
32 LeeS H, AldredgeR C. Analytic approach to determine optimal conditions for maximizing altitude of sounding rocket: flight in standard atmosphere[J]. Aerospace Science & Technology, 2015, 46(5): 374-385.
[1] 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325.
[2] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[3] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[4] 徐子昂, 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906.
[5] 刘璇, 马溢昌, 张秋根, 刘庆林. 富勒烯交联季铵化聚苯醚阴离子交换膜的制备[J]. 化工学报, 2021, 72(7): 3849-3855.
[6] 许晨怡, 叶恭然, 郭豪文, 庄园, 郭智恺, 韩晓红, 陈光明. 制冷剂R1336mzz(E)液相黏度理论与实验研究[J]. 化工学报, 2021, 72(6): 3261-3269.
[7] 罗军, 王林, 黄琴, 任思颖, 于旭东, 曾英. CsCl-PEG8000-H2O三元体系288.2、298.2、308.2 K相平衡测定[J]. 化工学报, 2021, 72(6): 3140-3148.
[8] 孙浩然, 吕中原, 吴成云, 胡海涛. 机载补气增焓制冷系统动态仿真模型[J]. 化工学报, 2021, 72(5): 2484-2492.
[9] 刘祖虎, 胡兴邦, 陈善勇, 李国祥, 郭学锋, 张志炳. 美罗培南加氢反应体系的热力学计算和分析[J]. 化工学报, 2021, 72(4): 1863-1873.
[10] 宇高义郎, 许竞莹, 王国卓, 陈志豪. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282.
[11] 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
[12] 黄琴, 于旭东, 李茂兰, 郑洪, 曾英. 308.2 K三元体系KCl+PEG10000/20000+H2O相平衡及热力学计算[J]. 化工学报, 2021, 72(4): 1895-1905.
[13] 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252.
[14] 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
[15] 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫平祥, 蓝兴英, 徐春明, 高金森. RFCC沉降器内油浆气化率的初步研究[J]. CIESC Journal, 2007, 15(3): 315 -319 .
[2] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[3] 刘会娥, 魏飞, 杨艳辉, 金涌. 内构件存在时提升管内流动及颗粒混合行为研究

[J]. CIESC Journal, 2003, 11(4): 371 -376 .
[4] 高正明, 施力田. 搅拌槽内温度对气含率的影响[J]. CIESC Journal, 2003, 11(2): 204 -207 .
[5] 李长海, 史鹏飞, 余政哲, 石宏仁. 2-萘磺酸/硫酸在弱碱性树脂上的吸附平衡研究[J]. CIESC Journal, 2003, 11(1): 38 -41 .
[6] 罗正鸿, 詹晓力, 陈丰秋, 阳永荣. Mo-Bi系丙烯氨氧化催化剂上氨分解反应动力学的Monte Carlo模拟[J]. CIESC Journal, 2003, 11(1): 110 -114 .
[7] 张现仁. 乙烷在单壁碳纳米管中的密度泛函理论研究[J]. CIESC Journal, 2002, 10(6): 644 -649 .
[8] 樊君, 胡晓云, 大矢晴彦, 上田义人, 山胁正也, 相原雅彦, 竹内隆, 根岸洋一. Pd-SiO2复合膜的氢气选择渗透特性[J]. CIESC Journal, 2002, 10(5): 580 -586 .
[9] 张金涛, 王补宣, 彭晓峰, 杜建华. 考虑界面蒸发时的降液膜流动传热[J]. CIESC Journal, 2001, 9(2): 145 -149 .
[10] 许光文, 王兵, HironoriSuzuki, KunioKato. Performance with Respect to Flue Gas Composition of a Combined Desulfurization/Denitration
Process Using Powder-Particle Fluidized Bed
[J]. CIESC Journal, 1999, 7(4): 295 -306 .