化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 348-355.doi: 10.11949/0438-1157.20201533
WANG Fei1(),WANG Jianmin2,SHAO Shuangquan3(
)
摘要:
数据中心冷却系统将IT器件的产热散发到室外环境中去要经过多级传热,本文采用与温差的方法对多级传热进行分析,结论如下:数据中心冷却为在一定温差ΔT驱动下利用载体将芯片散发的热量搬运到室外的过程,过程中存在着热量采集/传热温差ΔT1损失以及冷源系统排热温差ΔT2损失;通过减小芯片散热损失,降低气流掺混损失与换热器损失,降低总传热温差ΔT,实现空调系统充分利用自然冷源,运行在完全自然冷却区;当空调系统在完全自然冷却区域运行热管模式时,重力热管COP最高,液泵热管次之,一般高达40~80,甚至超过400,气泵热管最低,并且气泵是现有制冷压缩机COP最高点,可达15~30;当室内外温差小于ΔT2时,利用补偿温差原理使得制冷循环更加接近热管循环,实现制冷系统最低能耗运行,为数据中心冷却系统节能减排优化提供新的方法。
中图分类号:
1 | Masanet E, Shehabi A, Lei N A, et al. Recalibrating global data center energy-use estimates [J]. Science, 2020, 367(6481): 984-986. |
2 | Zhang H N, Shao S Q, Xu H B, et al. Free cooling of data centers: a review [J]. Renewable and Sustainable Energy Reviews, 2014, 35: 171-182. |
3 | Liu L J, Zhang Q, Zhai Z Q, et al. State-of-the-art on thermal energy storage technologies in data center [J]. Energy and Buildings, 2020, 226: 110345. |
4 | Zhang H N, Shao S Q, Tian C Q, et al. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 789-798. |
5 | Ding T, He Z G, Hao T, et al. Application of separated heat pipe system in data center cooling [J]. Applied Thermal Engineering, 2016, 109: 207-216. |
6 | Zhou F, Chen J, Ma G Y, et al. Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger [J]. Energy and Buildings, 2013, 66: 537-544. |
7 | Zhang P L, Wang B L, Shi W X, et al. Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer [J]. International Journal of Refrigeration, 2015, 58: 172-185. |
8 | Zhang H N, Shi Z C, Liu K T, et al. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers [J]. Applied Thermal Engineering, 2017, 111: 1083-1090. |
9 | Yue C, Zhang Q, Zhai Z Q, et al. Numerical investigation on thermal characteristics and flow distribution of a parallel micro-channel separate heat pipe in data center [J]. International Journal of Refrigeration, 2019, 98: 150-160. |
10 | Shao S Q, Liu H C, Zhang H N, et al. Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers [J]. Energy, 2019, 185: 829-836. |
11 | Han Z W, Ji Q, Wei H T, et al. Simulation study on performance of data center air-conditioning system with novel evaporative condenser [J]. Energy, 2020, 210: 118521. |
12 | Ling L, Zhang Q, Yu Y B, et al. Energy saving analysis of the cooling plant using lake water source base on the optimized control strategy with set points change [J]. Applied Thermal Engineering, 2018, 130: 1440-1449. |
13 | Huang Q H, Shao S Q, Zhang H N, et al. Development and composition of a data center heat recovery system and evaluation of annual operation performance [J]. Energy, 2019, 189: 116200. |
14 | He Z G, Ding T, Liu Y, et al. Analysis of a district heating system using waste heat in a distributed cooling data center [J]. Applied Thermal Engineering, 2018, 141: 1131-1140. |
15 | Wang J Q, Zhang Q, Yoon S, et al. Reliability and availability analysis of a hybrid cooling system with water-side economizer in data center [J]. Building and Environment, 2019, 148: 405-416. |
16 | Zou S K, Zhang Q, Yu Y B, et al. Field study on the self-adaptive capacity of multi-split heat pipe system (MSHPS) under non-uniform conditions in data center [J]. Applied Thermal Engineering, 2019, 160: 113999. |
17 | Tao D, Han W C, Zhi G H, et al. Experimental study on a loop thermosyphon cooling system in data centers using CO2 as a working fluid, especially thermal environment and energy-saving effect [J]. Applied Thermal Engineering, 2020, 175: 115359. |
18 | He Z G, Xi H N, Ding T, et al. Energy efficiency optimization of an integrated heat pipe cooling system in data center based on genetic algorithm [J]. Applied Thermal Engineering, 2021, 182: 115800. |
19 | Zhang H N, Shao S Q, Xu H B, et al. Experimental investigation on a loop thermosyphon with three evaporators: unique startup and oscillation phenomena [J]. International Journal of Refrigeration, 2019, 99: 363-370. |
20 | Zhang H N, Shao S Q, Gao Y P, et al. The transient response, oscillation and internal flow of a loop thermosyphon with dual evaporators [J]. International Journal of Refrigeration, 2018, 88: 451-457. |
21 | 王飞, 邵双全, 张海南. 数据中心冷却用动力型热管的实验研究[J]. 制冷学报, 2020, 41(4): 89-96. |
Wang F, Shao S Q, Zhang H N. Experimental study on compressor-driven loop heat pipe for data center cooling [J]. Journal of Refrigeration, 2020, 41(4): 89-96. | |
22 | Liu Y, Ma G Y, Xue L Z, et al. Energy-saving effect of integrated cooling unit with rotary booster and compressor for data center [J]. International Journal of Refrigeration, 2020, 119: 366-375. |
23 | Zhou F, Li C C, Zhu W P, et al. Energy-saving analysis of a case data center with a pump-driven loop heat pipe system in different climate regions in China [J]. Energy and Buildings, 2018, 169: 295-304. |
24 | Zhang P L, Zhou D H, Shi W X, et al. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner [J]. Applied Thermal Engineering, 2014, 65(1/2): 384-393. |
25 | Han L J, Shi W X, Wang B L, et al. Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station [J]. International Journal of Refrigeration, 2014, 40: 1-10. |
26 | Wang Z Y, Zhang X T, Li Z, et al. Analysis on energy efficiency of an integrated heat pipe system in data centers [J]. Applied Thermal Engineering, 2015, 90: 937-944. |
27 | Zhang H N, Shao S Q, Xu H B, et al. Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers [J]. Applied Thermal Engineering, 2015, 75: 185-192. |
28 | Zhang H N, Shao S Q, Xu H B, et al. Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon [J]. Applied Energy, 2017, 185: 1604-1612. |
29 | Tian H, Liang H, Li Z. An entransy based method for thermal analysis and management of high heat density data centers [J]. International Journal of Heat and Mass Transfer, 2018, 127: 1025-1039. |
30 | Qian X D, Li Z, Li Z X. Entransy and exergy analyses of airflow organization in data centers [J]. International Journal of Heat and Mass Transfer, 2015, 81: 252-259. |
31 | Zhan B F, Shao S Q, Zhang H N, et al. Simulation on vertical microchannel evaporator for rack-backdoor cooling of data center [J]. Applied Thermal Engineering, 2020, 164: 114550. |
32 | Zhou F, Ma G Y, Wang S C. Entropy generation rate analysis of a thermosyphon heat exchanger for cooling a telecommunication base station [J]. International Journal of Exergy, 2017, 22(2): 139. |
33 | Tian H, He Z G, Li Z. A combined cooling solution for high heat density data centers using multi-stage heat pipe loops [J]. Energy and Buildings, 2015, 94: 177-188. |
[1] | 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126. |
[2] | 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177. |
[3] | 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193. |
[4] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[5] | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
[6] | 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277. |
[7] | 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301. |
[8] | 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317. |
[9] | 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335. |
[10] | 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389. |
[11] | 梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502. |
[12] | 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105. |
[13] | 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648. |
[14] | 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522. |
[15] | 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628. |
|