化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 348-355.doi: 10.11949/0438-1157.20201533

• 流体力学与传递现象 • 上一篇    下一篇

数据中心冷却系统多级传热温差分析

王飞1(),王建民2,邵双全3()   

  1. 1.克莱门特捷联制冷设备(上海)有限公司,上海 201419
    2.中国石油昌平数据中心,北京 100007
    3.华中科技大学能源与动力工程学院,湖北 武汉 430074
  • 收稿日期:2020-10-30 修回日期:2021-01-11 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 邵双全 E-mail:489464921@qq.com;shaoshq@hust.edu.cn
  • 作者简介:王飞(1989—),男,硕士,工程师,489464921@qq.com
  • 基金资助:
    国家自然科学基金项目(52076085)

Analysis multi-stage heat transfer process of data center cooling system from the temperature difference

WANG Fei1(),WANG Jianmin2,SHAO Shuangquan3()   

  1. 1.Climaveneta Chat Union Refrigeration Equipment (Shanghai) Co. , Ltd. , Shanghai 201419, China
    2.CNPC Beijing Richfit Information Technology Co. , Ltd. , Beijing 100007, China
    3.School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2020-10-30 Revised:2021-01-11 Published:2021-06-20 Online:2021-06-20
  • Contact: SHAO Shuangquan E-mail:489464921@qq.com;shaoshq@hust.edu.cn

摘要:

数据中心冷却系统将IT器件的产热散发到室外环境中去要经过多级传热,本文采用与温差的方法对多级传热进行分析,结论如下:数据中心冷却为在一定温差ΔT驱动下利用载体将芯片散发的热量搬运到室外的过程,过程中存在着热量采集/传热温差ΔT1损失以及冷源系统排热温差ΔT2损失;通过减小芯片散热损失,降低气流掺混损失与换热器损失,降低总传热温差ΔT,实现空调系统充分利用自然冷源,运行在完全自然冷却区;当空调系统在完全自然冷却区域运行热管模式时,重力热管COP最高,液泵热管次之,一般高达40~80,甚至超过400,气泵热管最低,并且气泵是现有制冷压缩机COP最高点,可达15~30;当室内外温差小于ΔT2时,利用补偿温差原理使得制冷循环更加接近热管循环,实现制冷系统最低能耗运行,为数据中心冷却系统节能减排优化提供新的方法。

关键词: 数据中心冷却, 传热, 温差, 热管

Abstract:

The data center cooling system needs a multi-stage heat transfer process to dispatch the heat from the electronics equipment to the outdoor environment. This process is analyzed with the method of entransy and temperature difference, and some conclusions are drawn. Data center cooling is a process using the coolant to transport the heat generated in the chip to the outdoor under the driven temperature difference (ΔT), which includes the temperature difference of the heat acquisition from the chip (ΔT1) and the temperature difference of the heat extraction to the outdoor environment (ΔT2). Reducing the chip heat transfer loss, air mixing loss and heat exchanger loss can decrease the total heat transfer temperature difference (ΔT), and the cooling system can make full use of free cooling and operate in the complete free cooling mode. When the cooling system operates in the heat pipe mode in the fully free cooling area, the gravity driven heat pipe gets the highest COP, followed by the liquid pump driven heat pipe, whose COP can be as high as 40—80 generally, even more than 400, and the lowest is the gas pump driven heat pipe, whose highest COP can reach 15—30. When the temperature difference between indoor and outdoor is less than ΔT2, the principle of the compensation temperature difference is used to make the refrigeration cycle closer to the heat pipe cycle and realize the lowest energy consumption operation of the refrigeration system. It puts forward a new solution for energy conservation and emission reduction of the data center.

Key words: data center cooling, heat transfer, temperature difference, heat pipe

中图分类号: 

  • TQ 051.5

图1

数据中心热量传递过程"

图2

机房热环境营造过程的T-Q图(自然冷却)"

图3

机房热环境营造过程的T-Q图(压缩制冷冷却)"

图4

制冷/(理想)热管系统压焓图"

图5

常规列间空调运行图"

图6

37℃回风最小能耗分析图"

1 Masanet E, Shehabi A, Lei N A, et al. Recalibrating global data center energy-use estimates [J]. Science, 2020, 367(6481): 984-986.
2 Zhang H N, Shao S Q, Xu H B, et al. Free cooling of data centers: a review [J]. Renewable and Sustainable Energy Reviews, 2014, 35: 171-182.
3 Liu L J, Zhang Q, Zhai Z Q, et al. State-of-the-art on thermal energy storage technologies in data center [J]. Energy and Buildings, 2020, 226: 110345.
4 Zhang H N, Shao S Q, Tian C Q, et al. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 789-798.
5 Ding T, He Z G, Hao T, et al. Application of separated heat pipe system in data center cooling [J]. Applied Thermal Engineering, 2016, 109: 207-216.
6 Zhou F, Chen J, Ma G Y, et al. Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger [J]. Energy and Buildings, 2013, 66: 537-544.
7 Zhang P L, Wang B L, Shi W X, et al. Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer [J]. International Journal of Refrigeration, 2015, 58: 172-185.
8 Zhang H N, Shi Z C, Liu K T, et al. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers [J]. Applied Thermal Engineering, 2017, 111: 1083-1090.
9 Yue C, Zhang Q, Zhai Z Q, et al. Numerical investigation on thermal characteristics and flow distribution of a parallel micro-channel separate heat pipe in data center [J]. International Journal of Refrigeration, 2019, 98: 150-160.
10 Shao S Q, Liu H C, Zhang H N, et al. Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers [J]. Energy, 2019, 185: 829-836.
11 Han Z W, Ji Q, Wei H T, et al. Simulation study on performance of data center air-conditioning system with novel evaporative condenser [J]. Energy, 2020, 210: 118521.
12 Ling L, Zhang Q, Yu Y B, et al. Energy saving analysis of the cooling plant using lake water source base on the optimized control strategy with set points change [J]. Applied Thermal Engineering, 2018, 130: 1440-1449.
13 Huang Q H, Shao S Q, Zhang H N, et al. Development and composition of a data center heat recovery system and evaluation of annual operation performance [J]. Energy, 2019, 189: 116200.
14 He Z G, Ding T, Liu Y, et al. Analysis of a district heating system using waste heat in a distributed cooling data center [J]. Applied Thermal Engineering, 2018, 141: 1131-1140.
15 Wang J Q, Zhang Q, Yoon S, et al. Reliability and availability analysis of a hybrid cooling system with water-side economizer in data center [J]. Building and Environment, 2019, 148: 405-416.
16 Zou S K, Zhang Q, Yu Y B, et al. Field study on the self-adaptive capacity of multi-split heat pipe system (MSHPS) under non-uniform conditions in data center [J]. Applied Thermal Engineering, 2019, 160: 113999.
17 Tao D, Han W C, Zhi G H, et al. Experimental study on a loop thermosyphon cooling system in data centers using CO2 as a working fluid, especially thermal environment and energy-saving effect [J]. Applied Thermal Engineering, 2020, 175: 115359.
18 He Z G, Xi H N, Ding T, et al. Energy efficiency optimization of an integrated heat pipe cooling system in data center based on genetic algorithm [J]. Applied Thermal Engineering, 2021, 182: 115800.
19 Zhang H N, Shao S Q, Xu H B, et al. Experimental investigation on a loop thermosyphon with three evaporators: unique startup and oscillation phenomena [J]. International Journal of Refrigeration, 2019, 99: 363-370.
20 Zhang H N, Shao S Q, Gao Y P, et al. The transient response, oscillation and internal flow of a loop thermosyphon with dual evaporators [J]. International Journal of Refrigeration, 2018, 88: 451-457.
21 王飞, 邵双全, 张海南. 数据中心冷却用动力型热管的实验研究[J]. 制冷学报, 2020, 41(4): 89-96.
Wang F, Shao S Q, Zhang H N. Experimental study on compressor-driven loop heat pipe for data center cooling [J]. Journal of Refrigeration, 2020, 41(4): 89-96.
22 Liu Y, Ma G Y, Xue L Z, et al. Energy-saving effect of integrated cooling unit with rotary booster and compressor for data center [J]. International Journal of Refrigeration, 2020, 119: 366-375.
23 Zhou F, Li C C, Zhu W P, et al. Energy-saving analysis of a case data center with a pump-driven loop heat pipe system in different climate regions in China [J]. Energy and Buildings, 2018, 169: 295-304.
24 Zhang P L, Zhou D H, Shi W X, et al. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner [J]. Applied Thermal Engineering, 2014, 65(1/2): 384-393.
25 Han L J, Shi W X, Wang B L, et al. Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station [J]. International Journal of Refrigeration, 2014, 40: 1-10.
26 Wang Z Y, Zhang X T, Li Z, et al. Analysis on energy efficiency of an integrated heat pipe system in data centers [J]. Applied Thermal Engineering, 2015, 90: 937-944.
27 Zhang H N, Shao S Q, Xu H B, et al. Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers [J]. Applied Thermal Engineering, 2015, 75: 185-192.
28 Zhang H N, Shao S Q, Xu H B, et al. Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon [J]. Applied Energy, 2017, 185: 1604-1612.
29 Tian H, Liang H, Li Z. An entransy based method for thermal analysis and management of high heat density data centers [J]. International Journal of Heat and Mass Transfer, 2018, 127: 1025-1039.
30 Qian X D, Li Z, Li Z X. Entransy and exergy analyses of airflow organization in data centers [J]. International Journal of Heat and Mass Transfer, 2015, 81: 252-259.
31 Zhan B F, Shao S Q, Zhang H N, et al. Simulation on vertical microchannel evaporator for rack-backdoor cooling of data center [J]. Applied Thermal Engineering, 2020, 164: 114550.
32 Zhou F, Ma G Y, Wang S C. Entropy generation rate analysis of a thermosyphon heat exchanger for cooling a telecommunication base station [J]. International Journal of Exergy, 2017, 22(2): 139.
33 Tian H, He Z G, Li Z. A combined cooling solution for high heat density data centers using multi-stage heat pipe loops [J]. Energy and Buildings, 2015, 94: 177-188.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[3] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[7] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[8] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[9] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[10] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[11] 梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502.
[12] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[13] 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
[14] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
[15] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 柯明, 汪燮卿, 张凤美. 磷改性ZSM-5分子筛物化性质和裂解制乙烯性能的研究[J]. CIESC Journal, 2003, 11(6): 671 -676 .
[2] 未作君, 徐世民, 元英进, 许松林. 采用CFD模拟装备标准透平桨或45°-斜向上桨搅拌反应器内部流体力学特性[J]. CIESC Journal, 2003, 11(4): 467 -471 .
[3] 袁希钢, 安维中. 热集成复杂精馏流程综合的随机最优化方法[J]. CIESC Journal, 2002, 10(5): 495 -507 .
[4] 张诚, 孟琴, 吕德伟. 真菌细胞壁结构性多糖与丙烯酸接枝共聚反应研究[J]. CIESC Journal, 2001, 9(1): 97 -99 .
[5] 任迪峰, 毛志怀, 王建中. 中草药干燥过程中质量退化动力学模型的研究[J]. CIESC Journal, 2004, 12(6): 822 -825 .
[6] 昝佳, 朱德权, 谭丰苹, 蒋国强, 林莹, 丁富新. 氟脲嘧啶微粒-壳聚糖微敏性水凝胶复合释药系统的制备
[J]. CIESC Journal, 2006, 14(2): 235 -241 .
[7] 刘兴高. 非均相催化丙稀聚合的建模与仿真[J]. CIESC Journal, 2007, 15(4): 545 -553 .
[8] 许松林, 王惠嫒, 徐世民. 计算大型塔板效率的区域贡献法[J]. CIESC Journal, 2005, 13(4): 552 -555 .
[9] 胡玉峰. Pathwardhan-Kumer密度规则及基于线性等压关系的密度规则可适性的研究[J]. CIESC Journal, 2001, 9(3): 319 -321 .
[10] 阮艳莉,唐致远,黄保民. 碳含量对LiFePO4/C复合正极材料性能的影响[J]. CIESC Journal, 2005, 13(5): 686 -690 .