化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 206-212.DOI: 10.11949/0438-1157.20230078
收稿日期:
2023-02-03
修回日期:
2023-03-05
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
吴延鹏
作者简介:
刘明栖(1998—),女,硕士研究生,Kirs592850137@163.com
基金资助:
Received:
2023-02-03
Revised:
2023-03-05
Online:
2023-06-05
Published:
2023-09-27
Contact:
Yanpeng WU
摘要:
导光管可以改善室内光环境,但在高大空间建筑中安装大量导光管会导致夏季室内热量增加、冬季室内热量损失,因此必须考虑传热问题。通过改变导光管的直径和长度,对北京地区夏季和冬季工况下高大空间建筑导光管的传热特性进行了模拟分析。结果表明,夏季时,导光管内部空气分布较为均匀,平均温度在20℃至32℃之间变化,随着导光管直径增加,管内空气平均温度先下降后趋于平稳,总热损失逐渐增大;随着导光管长度增加,平均温度呈下降趋势,总传热量无明显变化趋势,最终保持不变。冬季时,导光管内部空气分为两个区域,平均温度在0℃至25℃之间变化,随着导光管直径增加,平均温度升高,总传热量增大;随着导光管长度增加,平均温度先上升后趋于平缓,总传热量先增加,最终变化不明显。
中图分类号:
刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212.
Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer[J]. CIESC Journal, 2023, 74(S1): 206-212.
1 | Alrubaih M S, Zain M F M, Alghoul M A, et al. Research and development on aspects of daylighting fundamentals[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 494-505. |
2 | Tsang E K W, Kocifaj M, Li D H W, et al. Straight light pipes' daylighting: a case study for different climatic zones[J]. Solar Energy, 2018, 170: 56-63. |
3 | Kim J T, Kim G. Overview and new developments in optical daylighting systems for building a healthy indoor environment[J]. Building and Environment, 2010, 45(2): 256-269. |
4 | Yun G Y, Shin H Y, Kim J T. Monitoring and evaluation of a light-pipe system used in Korea[J]. Indoor and Built Environment, 2010, 19(1): 129-136. |
5 | Vasilakopoulou K, Kolokotsa D, Santamouris M, et al. Analysis of the experimental performance of light pipes[J]. Energy and Buildings, 2017, 151: 242-249. |
6 | Kocifaj M, Kómar L, Kohút I. Modeling the aerosol effects on the light field below a tubular-pipe: a case of clear sky conditions[J]. Solar Energy, 2014, 107: 122-134. |
7 | Mohelnikova J. Tubular light guide evaluation[J]. Building and Environment, 2009, 44(10): 2193-2200. |
8 | Robertson A P, Hedges R C, Rideout N M. Optimisation and design of ducted daylight systems[J]. Lighting Research & Technology, 2010, 42(2): 161-181. |
9 | Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020, 142: 105557. |
10 | Mehmood U, Al-Sulaiman F A, Yilbas B S, et al. Superhydrophobic surfaces with antireflection properties for solar applications: a critical review[J]. Solar Energy Materials and Solar Cells, 2016, 157: 604-623. |
11 | Ikuzwe A, Sebitosi A B. A novel design of a daylighting system for a classroom in rural South Africa[J]. Solar Energy, 2015, 114: 349-355. |
12 | Kocifaj M, Petržala J. Designing of light-pipe diffuser through its computed optical properties: a novel solution technique and some consequences[J]. Solar Energy, 2019, 190: 386-395. |
13 | Nilsson A M, Jonsson J C, Roos A. Spectrophotometric measurements and ray tracing simulations of mirror light pipes to evaluate the color of the transmitted light[J]. Solar Energy Materials and Solar Cells, 2014, 124: 172-179. |
14 | Heng C Y S, Lim Y, Osse D R. Horizontal light pipe transporter for deep plan high-rise office daylighting in tropical climate[J]. Building and Environment, 2020, 171: 106645. |
15 | Garcia-Hansen V, Edmonds I. Methods for the illumination of multilevel buildings with vertical light pipes[J]. Solar Energy, 2015, 117: 74-88. |
16 | Kennedy D M, O'Rourke F. Experimental analysis of a scaled, multi-aperture, light-pipe, daylighting system[J]. Solar Energy, 2015, 122: 181-190. |
17 | Baroncini C, Boccia O, Chella F, et al. Experimental analysis on a 1∶2 scale model of the double light pipe, an innovative technological device for daylight transmission[J]. Solar Energy, 2010, 84(2): 296-307. |
18 | Darula S, Kocifaj M, Kittler R, et al. Illumination of interior spaces by bended hollow light guides: application of the theoretical light propagation method[J]. Solar Energy, 2010, 84(12): 2112-2119. |
19 | Chirarattananon S, Chedsiri S, Renshen L. Daylighting through light pipes in the tropics[J]. Solar Energy, 2000, 69(4): 331-341. |
20 | Oliveira A C, Silva A R, Afonso C F, et al. Experimental and numerical analysis of natural ventilation with combined light/vent pipes[J]. Applied Thermal Engineering, 2001, 21(18): 1925-1936. |
21 | Varga S, Oliveira A C. Ventilation terminals for use with light pipes in buildings: a CFD study[J]. Applied Thermal Engineering, 2000, 20(18): 1743-1752. |
22 | Šikula O, Mohelníková J, Plášek J. Thermal CFD analysis of tubular light guides[J]. Energies, 2013, 6(12): 6304-6321. |
23 | Šikula O, Mohelníková J, Plášek J. Thermal analysis of light pipes for insulated flat roofs[J]. Energy and Buildings, 2014, 85: 436-444. |
24 | Pirasaci T. Investigation of laminar natural convection heat transfer within tubular daylighting devices for winter conditions[J]. Journal of Building Engineering, 2015, 4: 52-59. |
25 | 陆耀庆. 实用供热空调设计手册[M]. 2版. 北京: 中国建筑工业出版社, 2008: 225. |
Lu Y Q. Practical Heating and Air Conditioning Design Manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008: 225. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[15] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||