化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4196-4203.doi: 10.11949/0438-1157.20210012
Qiongbin DAI(),Hongbin LIU,Qibin XIA,Xin ZHOU(
),Zhong LI(
)
摘要:
主要围绕从低品位煤层气中回收分离低浓度的CH4这一重要需求,探索以生物质为碳源研制具有优良CH4/N2分离性能的颗粒炭吸附剂。选择大米碎粒作为碳源,通过碳化制备颗粒状炭前体,然后应用CO2进行活化,制备出大米基颗粒炭材料(GRCM),研究其吸附分离CH4/N2的性能。所制得的颗粒炭材料具有较窄微孔分布,其中样品GRCM-900的BET比表面积为938.529 m2/g。FT-IR分析结果显示大米基颗粒炭表面含有羟基及羰基等含氧官能团。其CH4吸附容量和CH4/N2吸附选择性分别高达1.32 mmol / g和5.68(在298 K和100 kPa条件下),优于大多数已报道的粉末状炭材料和MOF材料。分子模拟揭示了甲烷和氮气在GRCM炭材料狭缝孔道中的吸附构型和差异。固定床实验证实,应用GRCM炭材料可以在常温条件下有效地分离CH4/N2混合物,所制得的颗粒GRCM在从低品位煤层气中回收CH4方面有很好的应用前景。
中图分类号:
1 | 杨颖, 曲冬蕾, 李平, 等. 低浓度煤层气吸附浓缩技术研究与发展[J]. 化工学报, 2018, 69(11): 4518-4529. |
Yang Y, Qu D L, Li P, et al. Research and development on enrichment of low concentration coal mine methane by adsorption technology[J]. CIESC Journal, 2018, 69(11): 4518-4529. | |
2 | Nandanwar S U, Corbin D R, Shiflett M B. A review of porous adsorbents for the separation of nitrogen from natural gas[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13355-13369. |
3 | Wang T, Lin E, Peng Y L, et al. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coordination Chemistry Reviews, 2020, 423: 213485. |
4 | Saleman T L, Li G, Rufford T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chemical Engineering Journal, 2015, 281: 739-748. |
5 | 韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758. |
Han Z Y, Ding Z Y, Han Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 750-758. | |
6 | 尚华, 白洪灏, 刘佳奇, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098. |
Shang H, Bai H H, Liu J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1 [J]. CIESC Journal, 2020, 71(5): 2088-2098. | |
7 | Dąbrowski A. Adsorption—from theory to practice[J]. Advances in Colloid and Interface Science, 2001, 93(1/2/3): 135-224. |
8 | Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721. |
9 | Mohanty S, McCormick A V. Prospects for principles of size and shape selective separations using zeolites[J]. Chemical Engineering Journal, 1999, 74(1/2): 1-14. |
10 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
11 | Hendon C H, Rieth A J, Korzyński M D, et al. Grand challenges and future opportunities for metal-organic frameworks[J]. ACS Central Science, 2017, 3(6): 554-563. |
12 | 胡江亮, 孙天军, 刘小伟, 等. CH4-N2在MOFs结构材料中的吸附分离性能[J]. 化工学报, 2015, 66(9): 3518-3528. |
Hu J L, Sun T J, Liu X W, et al. Adsorption and separation of CH4-N2 with different structural MOFs[J]. CIESC Journal, 2015, 66(9): 3518-3528. | |
13 | Du S J, Wu Y, Wang X J, et al. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation[J]. AIChE Journal, 2020, 66(7): e16231. |
14 | Liu F, Zhang Y, Zhang P X, et al. Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture[J]. Chemical Engineering Journal, 2020, 399: 125812. |
15 | Chen F Q, Zhang Z G, Yang Q W, et al. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 977-985. |
16 | Zhang P X, Wang J, Fan W, et al. Ultramicroporous carbons with extremely narrow pore size distribution viain situ ionic activation for efficient gas-mixture separation[J]. Chemical Engineering Journal, 2019, 375: 121931. |
17 | Li Y, Xu R, Wang B B, et al. Enhanced N-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2[J]. Nanomaterials, 2019, 9(2): 266. |
18 | Akhtar F, Andersson L, Ogunwumi S, et al. Structuring adsorbents and catalysts by processing of porous powders[J]. Journal of the European Ceramic Society, 2014, 34(7): 1643-1666. |
19 | Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al. Activated carbon monoliths for methane storage: influence of binder[J]. Carbon, 2002, 40(15): 2817-2825. |
20 | Shah B B, Kundu T, Zhao D. Mechanical properties of shaped metal-organic frameworks[J]. Topics in Current Chemistry, 2019, 377(5): 1-34. |
21 | Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388. |
22 | Tang R L, Dai Q B, Liang W W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas[J]. Chemical Engineering Journal, 2020, 384: 123388. |
23 | Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909. |
24 | Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363. |
25 | Sircar S, Mohr R, Ristic C, et al. Isosteric heat of adsorption: theory and experiment[J]. The Journal of Physical Chemistry B, 1999, 103(31): 6539-6546. |
26 | 叶振华. 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992. |
Ye Z H. Chemical Adsorption Separation Process [M]. Beijing: China Petrochemical Press, 1992. | |
27 | 陈敏玲, 王兴杰, 肖静, 等. 淀粉基多孔碳材料的制备及其吸附CO2/CH4性能[J]. 化工学报, 2018, 69(1): 455-463. |
Chen M L, Wang X J, Xiao J, et al. Preparation of porous carbon material from starch and its performance for separation of CO2/CH4[J]. CIESC Journal, 2018, 69(1): 455-463. | |
28 | Fan Y H, Wang Y, Kang D, et al. Oil-tea shell derived N-doped porous carbon for selective separation of CO2, CH4, and N2[J]. Science of Advanced Materials, 2019, 11(8): 1146-1155. |
29 | Guo Y, Hu J L, Liu X W, et al. Scalable solvent-free preparation of [Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2[J]. Chemical Engineering Journal, 2017, 327: 564-572. |
30 | Kim T H, Kim S Y, Yoon T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal, 2020, 399: 125717. |
31 | Li L B, Yang J F, Li J M, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246. |
32 | Li L Y, Yang L F, Wang J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE Journal, 2018, 64(10): 3681-3689. |
33 | Niu Z, Cui X L, Pham T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
34 | Yuan B, Wu X F, Chen Y X, et al. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon[J]. Journal of Colloid and Interface Science, 2013, 394: 445-450. |
[1] | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
[2] | 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767. |
[3] | 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774. |
[4] | 王燕鸿, 姚凯, 郎雪梅, 樊栓狮. 高含水油包水乳液的水合物储气性能研究[J]. 化工学报, 2021, 72(9): 4872-4880. |
[5] | 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795. |
[6] | 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707. |
[7] | 陈立涛, 孙宝江, 张宁涛, 周万田, 王昊天, 陈野, 卢海龙. 石英砂中甲烷水合物的溶解开采实验研究[J]. 化工学报, 2021, 72(8): 4336-4345. |
[8] | 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380. |
[9] | 柯蓝婷, 王远鹏, 郑艳梅, 李清彪. 生物甲烷系统的组分分析与综合评价[J]. 化工学报, 2021, 72(7): 3801-3813. |
[10] | 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214. |
[11] | 王晓丽, 杨文胜. 电化学提锂体系及其电极材料的研究进展[J]. 化工学报, 2021, 72(6): 2957-2971. |
[12] | 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34:Si含量的影响[J]. 化工学报, 2021, 72(5): 2578-2585. |
[13] | 蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825. |
[14] | 赵红庆, 刘奇磊, 张磊, 董亚超, 都健. 考虑选择性和反应速率的多目标制药反应溶剂设计[J]. 化工学报, 2021, 72(3): 1465-1472. |
[15] | 李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263. |
|