化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4196-4203.doi: 10.11949/0438-1157.20210012

• 分离工程 • 上一篇    下一篇

一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能

戴琼斌(),刘宏斌,夏启斌,周欣(),李忠()   

  1. 华南理工大学化学与化工学院,广东 广州 510640
  • 收稿日期:2021-01-05 修回日期:2021-03-25 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 周欣,李忠 E-mail:2386421285@qq.com;xinzhou@scut.edu.cn;cezhli@scut.edu.cn
  • 作者简介:戴琼斌(1996—),男,硕士研究生,2386421285@qq.com
  • 基金资助:
    国家自然科学基金项目(21978099)

Preparation of new granular carbon material and its efficient separation of methane and nitrogen

Qiongbin DAI(),Hongbin LIU,Qibin XIA,Xin ZHOU(),Zhong LI()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2021-01-05 Revised:2021-03-25 Published:2021-08-05 Online:2021-08-05
  • Contact: Xin ZHOU,Zhong LI E-mail:2386421285@qq.com;xinzhou@scut.edu.cn;cezhli@scut.edu.cn

摘要:

主要围绕从低品位煤层气中回收分离低浓度的CH4这一重要需求,探索以生物质为碳源研制具有优良CH4/N2分离性能的颗粒炭吸附剂。选择大米碎粒作为碳源,通过碳化制备颗粒状炭前体,然后应用CO2进行活化,制备出大米基颗粒炭材料(GRCM),研究其吸附分离CH4/N2的性能。所制得的颗粒炭材料具有较窄微孔分布,其中样品GRCM-900的BET比表面积为938.529 m2/g。FT-IR分析结果显示大米基颗粒炭表面含有羟基及羰基等含氧官能团。其CH4吸附容量和CH4/N2吸附选择性分别高达1.32 mmol / g和5.68(在298 K和100 kPa条件下),优于大多数已报道的粉末状炭材料和MOF材料。分子模拟揭示了甲烷和氮气在GRCM炭材料狭缝孔道中的吸附构型和差异。固定床实验证实,应用GRCM炭材料可以在常温条件下有效地分离CH4/N2混合物,所制得的颗粒GRCM在从低品位煤层气中回收CH4方面有很好的应用前景。

关键词: 多孔颗粒炭, 煤层气, 吸附等温线, 选择性, 甲烷, 氮气

Abstract:

Focusing on the important need for the recovery and separation of low-concentration CH4 from low-grade coalbed methane, it mainly explores the development of granular carbon adsorbents with excellent CH4/N2 separation performance using biomass as a carbon source. Granular rice grains were chosen as carbon source to prepare granular rice-based carbon materials (GRCM) by carbonization and then CO2 activation. The resulting granular carbon material exhibited a relatively narrow micropore distribution, and its BET specific surface area reached 938.529 m2/g. FT-IR analysis results show that the surface of rice-based granular carbon contains oxygen-containing functional groups such as hydroxyl and carbonyl groups. The CH4 adsorption capacity and CH4/N2 adsorption selectivity of the sample GRCM-900 are as high as 1.32 mmol/g and 5.68 (298 K and 100 kPa), respectively, comparable to most of the reported powdered carbon materials and MOF. Molecular simulation revealed the different contributions of surface hydroxyl/carboxyl/aldehyde groups of GRCM to the adsorption selectivity of CH4/N2, and the mechanism of methane and nitrogen adsorption in the slit pores of GRCM. Fixed-bed experiments confirmed that the application of GRCM carbon materials can effectively separate CH4/N2 mixtures at normal temperature, and the prepared granular GRCM have potential application prospects in recovering CH4 from low-concentration CH4 coal mine gas.

Key words: granular porous carbon, coalbed methane, adsorption isotherm, selectivity, methane, nitrogen

中图分类号: 

  • TQ 028.1
1 杨颖, 曲冬蕾, 李平, 等. 低浓度煤层气吸附浓缩技术研究与发展[J]. 化工学报, 2018, 69(11): 4518-4529.
Yang Y, Qu D L, Li P, et al. Research and development on enrichment of low concentration coal mine methane by adsorption technology[J]. CIESC Journal, 2018, 69(11): 4518-4529.
2 Nandanwar S U, Corbin D R, Shiflett M B. A review of porous adsorbents for the separation of nitrogen from natural gas[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13355-13369.
3 Wang T, Lin E, Peng Y L, et al. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coordination Chemistry Reviews, 2020, 423: 213485.
4 Saleman T L, Li G, Rufford T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chemical Engineering Journal, 2015, 281: 739-748.
5 韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758.
Han Z Y, Ding Z Y, Han Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 750-758.
6 尚华, 白洪灏, 刘佳奇, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098.
Shang H, Bai H H, Liu J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1 [J]. CIESC Journal, 2020, 71(5): 2088-2098.
7 Dąbrowski A. Adsorption—from theory to practice[J]. Advances in Colloid and Interface Science, 2001, 93(1/2/3): 135-224.
8 Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721.
9 Mohanty S, McCormick A V. Prospects for principles of size and shape selective separations using zeolites[J]. Chemical Engineering Journal, 1999, 74(1/2): 1-14.
10 Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
11 Hendon C H, Rieth A J, Korzyński M D, et al. Grand challenges and future opportunities for metal-organic frameworks[J]. ACS Central Science, 2017, 3(6): 554-563.
12 胡江亮, 孙天军, 刘小伟, 等. CH4-N2在MOFs结构材料中的吸附分离性能[J]. 化工学报, 2015, 66(9): 3518-3528.
Hu J L, Sun T J, Liu X W, et al. Adsorption and separation of CH4-N2 with different structural MOFs[J]. CIESC Journal, 2015, 66(9): 3518-3528.
13 Du S J, Wu Y, Wang X J, et al. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation[J]. AIChE Journal, 2020, 66(7): e16231.
14 Liu F, Zhang Y, Zhang P X, et al. Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture[J]. Chemical Engineering Journal, 2020, 399: 125812.
15 Chen F Q, Zhang Z G, Yang Q W, et al. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 977-985.
16 Zhang P X, Wang J, Fan W, et al. Ultramicroporous carbons with extremely narrow pore size distribution viain situ ionic activation for efficient gas-mixture separation[J]. Chemical Engineering Journal, 2019, 375: 121931.
17 Li Y, Xu R, Wang B B, et al. Enhanced N-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2[J]. Nanomaterials, 2019, 9(2): 266.
18 Akhtar F, Andersson L, Ogunwumi S, et al. Structuring adsorbents and catalysts by processing of porous powders[J]. Journal of the European Ceramic Society, 2014, 34(7): 1643-1666.
19 Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al. Activated carbon monoliths for methane storage: influence of binder[J]. Carbon, 2002, 40(15): 2817-2825.
20 Shah B B, Kundu T, Zhao D. Mechanical properties of shaped metal-organic frameworks[J]. Topics in Current Chemistry, 2019, 377(5): 1-34.
21 Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388.
22 Tang R L, Dai Q B, Liang W W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas[J]. Chemical Engineering Journal, 2020, 384: 123388.
23 Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
24 Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363.
25 Sircar S, Mohr R, Ristic C, et al. Isosteric heat of adsorption:   theory and experiment[J]. The Journal of Physical Chemistry B, 1999, 103(31): 6539-6546.
26 叶振华. 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992.
Ye Z H. Chemical Adsorption Separation Process [M]. Beijing: China Petrochemical Press, 1992.
27 陈敏玲, 王兴杰, 肖静, 等. 淀粉基多孔碳材料的制备及其吸附CO2/CH4性能[J]. 化工学报, 2018, 69(1): 455-463.
Chen M L, Wang X J, Xiao J, et al. Preparation of porous carbon material from starch and its performance for separation of CO2/CH4[J]. CIESC Journal, 2018, 69(1): 455-463.
28 Fan Y H, Wang Y, Kang D, et al. Oil-tea shell derived N-doped porous carbon for selective separation of CO2, CH4, and N2[J]. Science of Advanced Materials, 2019, 11(8): 1146-1155.
29 Guo Y, Hu J L, Liu X W, et al. Scalable solvent-free preparation of [Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2[J]. Chemical Engineering Journal, 2017, 327: 564-572.
30 Kim T H, Kim S Y, Yoon T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal, 2020, 399: 125717.
31 Li L B, Yang J F, Li J M, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246.
32 Li L Y, Yang L F, Wang J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE Journal, 2018, 64(10): 3681-3689.
33 Niu Z, Cui X L, Pham T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141.
34 Yuan B, Wu X F, Chen Y X, et al. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon[J]. Journal of Colloid and Interface Science, 2013, 394: 445-450.
[1] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[2] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[3] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[4] 王燕鸿, 姚凯, 郎雪梅, 樊栓狮. 高含水油包水乳液的水合物储气性能研究[J]. 化工学报, 2021, 72(9): 4872-4880.
[5] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[6] 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707.
[7] 陈立涛, 孙宝江, 张宁涛, 周万田, 王昊天, 陈野, 卢海龙. 石英砂中甲烷水合物的溶解开采实验研究[J]. 化工学报, 2021, 72(8): 4336-4345.
[8] 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380.
[9] 柯蓝婷, 王远鹏, 郑艳梅, 李清彪. 生物甲烷系统的组分分析与综合评价[J]. 化工学报, 2021, 72(7): 3801-3813.
[10] 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214.
[11] 王晓丽, 杨文胜. 电化学提锂体系及其电极材料的研究进展[J]. 化工学报, 2021, 72(6): 2957-2971.
[12] 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34:Si含量的影响[J]. 化工学报, 2021, 72(5): 2578-2585.
[13] 蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825.
[14] 赵红庆, 刘奇磊, 张磊, 董亚超, 都健. 考虑选择性和反应速率的多目标制药反应溶剂设计[J]. 化工学报, 2021, 72(3): 1465-1472.
[15] 李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[2] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[3] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[4] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[5] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[6] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[7] 闻建平, 王长. 吡虫啉合成的工艺优化和工业放大[J]. CIESC Journal, 2003, 11(5): 604 -607 .
[8] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[9] 包永忠, 魏真理, 翁志学, 黄志明. 悬浮态乳液聚合条件对聚氯乙烯树脂颗粒特性的影响[J]. CIESC Journal, 2003, 11(4): 431 -435 .
[10] 杨晓宁. 基于矩法和时间域分析法研究稠密CO2中甲苯和对氯苯在硅胶固定床系统中的吸附和传递性质[J]. CIESC Journal, 2003, 11(3): 280 -288 .