化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3445-3465.doi: 10.11949/0438-1157.20210073

• 综述与专论 • 上一篇    下一篇

己烷异构体吸附分离材料研究进展

韩笑1(),陈雨亭1,苏宝根1,2,鲍宗必1,2,张治国1,2,杨亦文1,2,任其龙1,2,杨启炜1,2()   

  1. 1.浙江大学化学工程与生物工程学院,生物质化工教育部重点实验室,浙江 杭州 310027
    2.浙江大学衢州研究院,浙江 衢州 324000
  • 收稿日期:2021-01-12 修回日期:2021-04-20 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 杨启炜 E-mail:21828080@zju.edu.cn;yangqw@zju.edu.cn
  • 作者简介:韩笑(1995—),女,硕士研究生,21828080@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21878261);浙江省自然科学基金项目(LR21B060002)

Advances in adsorbents for hexane isomers separation

HAN Xiao1(),CHEN Yuting1,SU Baogen1,2,BAO Zongbi1,2,ZHANG Zhiguo1,2,YANG Yiwen1,2,REN Qilong1,2,YANG Qiwei1,2()   

  1. 1.College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Institute of Zhejiang University-Quzhou, Quzhou 324000, Zhejiang, China
  • Received:2021-01-12 Revised:2021-04-20 Published:2021-07-05 Online:2021-07-05
  • Contact: YANG Qiwei E-mail:21828080@zju.edu.cn;yangqw@zju.edu.cn

摘要:

己烷异构体的高效分离是石化行业生产高辛烷值汽油的关键过程之一。己烷异构体分子的化学性质不活泼,极化率、沸点相近,分离极具挑战。目前,基于5A分子筛的吸附分离技术在工业上得到了广泛应用,但5A分子筛的吸附容量较低,且无法实现单支链异构体与双支链异构体的选择性分离,限制了汽油辛烷值的进一步提高。金属-有机框架材料等新型多孔材料的结构多样性和高度可设计性使其可以精准识别异构体分子在形状和性质上的微小差异,展现出良好的分离性能和应用前景。重点综述了金属-有机框架材料在己烷异构体分离中的研究进展,归纳了分离机理和影响因素,并对该领域中存在的问题和未来发展方向进行了探讨。

关键词: 金属有机框架材料, 吸附分离, 己烷异构体

Abstract:

Efficient separation of hexane isomers is one of the key processes in petrochemical industry to produce high-octane gasoline. The chemical properties of hexane isomer molecules are inactive, with similar polarizabilities and boiling points, making separation extremely challenging. At present, the adsorptive separation technology based on 5A molecular sieve has been widely used in industry. However, the adsorption capacity of 5A molecular sieve is low, and it cannot discriminate between mono-branched and di-branched isomers, limiting the further increase of the octane number. The structural diversity and high design ability of new porous materials such as metal-organic frameworks (MOFs) enable them to accurately identify the minor differences in the shapes and properties of isomer molecules, showing great separation performance and application prospects. In this review, the focus was on the recent progress of MOFs in the adsorptive separation of hexane isomers. Additionally, the current challenges and perspective of MOFs for the separation of hexane isomers were discussed.

Key words: metal-organic frameworks, adsorptive separation, hexane isomers

中图分类号: 

  • TB 34
1 Meyers R A. Handbook of Petroleum Refining Processes[M]. New York: McGraw Hill, 2004.
2 Peralta D, Chaplais G, Simon-Masseron A, et al. Separation of C6 paraffins using zeolitic imidazolate frameworks: comparison with zeolite 5A[J]. Industrial & Engineering Chemistry Research, 2012, 51(12): 4692-4702.
3 张威. 己烷的工业分离方法[J]. 河北化工, 1992, 15(4): 34-36.
Zhang W. The industrial separation of hexane[J]. Hebei Chemical Engineering and Industry, 1992, 15(4): 34-36.
4 郭辉, 王菊香, 景晓锋. UOP C5/C6低温异构化技术及工业应用[J]. 炼油技术与工程, 2018, 48(10): 9-13.
Guo H, Wang J X, Jing X F. UOP C5/C6 low-temperature isomerization process(Penex-DIH) and its commercial application[J]. Petroleum Refinery Engineering, 2018, 48(10): 9-13.
5 Bao Z B, Chang G G, Xing H B, et al. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures[J]. Energy & Environmental Science, 2016, 9(12): 3612-3641.
6 Silva J A C, Rodrigues A E. Equilibrium and kinetics of n-hexane sorption in pellets of 5A zeolite[J]. AIChE Journal, 1997, 43(10): 2524-2534.
7 Arruebo M, Falconer J L, Noble R D. Separation of binary C5 and C6 hydrocarbon mixtures through MFI zeolite membranes[J]. Journal of Membrane Science, 2006, 269(1/2): 171-176.
8 Olson D H, Camblor M A, Villaescusa L A, et al. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58[J]. Microporous and Mesoporous Materials, 2004, 67(1): 27-33.
9 Jasra R V, Bhat S G T. Adsorptive bulk separations by zeolite molecular sieves[J]. Separation Science and Technology, 1988, 23(10/11): 945-989.
10 Mendes P A P, Rodrigues A E, Horcajada P, et al. Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8[J]. Microporous and Mesoporous Materials, 2014, 194: 146-156.
11 Wang H, Dong X, Lin J, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers[J]. Nature Communications, 2018, 9(1): 1745.
12 Krishna R, Calero S, Smit B. Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 81-94.
13 Schenk M, Vidal S L, Vlugt T J H, et al. Separation of alkane isomers by exploiting entropy effects during adsorption on silicalite-1: a configurational-bias Monte Carlo simulation study[J]. Langmuir, 2001, 17(5): 1558-1570.
14 Vlugt T J H, Krishna R, Smit B. Molecular simulations of adsorption isotherms for linear and branched alkanes and their mixtures in silicalite[J]. The Journal of Physical Chemistry B, 1999, 103(7): 1102-1118.
15 Krishna R, van Baten J M. Diffusion of hydrocarbon mixtures in MFI zeolite: influence of intersection blocking[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 614-620.
16 Bárcia P S, Silva J A C, Rodrigues A E. Adsorption equilibrium and kinetics of branched hexane isomers in pellets of BETA zeolite[J]. Microporous and Mesoporous Materials, 2005, 79(1/2/3): 145-163.
17 Bárcia P S, Silva J A C, Rodrigues A E. Multicomponent sorption of hexane isomers in zeolite BETA[J]. AIChE Journal, 2007, 53(8): 1970-1981.
18 Bárcia P S, Silva J A C, Rodrigues A E. Separation by fixed-bed adsorption of hexane isomers in zeolite BETA pellets[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4316-4328.
19 Maesen T, Harris T. Process for production high RON gasoline using CFI zeolite: US7037422[P]. 2006-05-02.
20 Krishna R. Separating mixtures by exploiting molecular packing effects in microporous materials[J]. Physical Chemistry Chemical Physics, 2015, 17(1): 39-59.
21 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674.
22 Kitagawa S. Porous materials and the age of gas[J]. Angewandte Chemie International Edition, 2015, 54(37): 10686-10687.
23 Lin J B, Zhang J P, Chen X M. Nonclassical active site for enhanced gas sorption in porous coordination polymer[J]. Journal of the American Chemical Society, 2010, 132(19): 6654-6656.
24 Banerjee D, Cairns A J, Liu J, et al. Potential of metal-organic frameworks for separation of xenon and krypton[J]. Accounts of Chemical Research, 2015, 48(2): 211-219.
25 Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428.
26 Grzesiak A L, Uribe F J, Ockwig N W, et al. Polymer-induced heteronucleation for the discovery of new extended solids[J]. Angewandte Chemie International Edition, 2006, 45(16): 2553-2556.
27 Cohen S M. Modifying MOFs: new chemistry, new materials[J]. Chemical Science, 2010, 1(1): 32-36.
28 Wang B, Xie L H, Wang X Q, et al. Applications of metal-organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal[J]. Green Energy & Environment, 2018, 3(3): 191-228.
29 Nijem N, Wu H H, Canepa P, et al. Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons[J]. Journal of the American Chemical Society, 2012, 134(37): 15201-15204.
30 Lin R B, Li L B, Wu H, et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material[J]. Journal of the American Chemical Society, 2017, 139(23): 8022-8028.
31 Shen J, He X, Ke T, et al. Simultaneous interlayer and intralayer space control in two-dimensional metal-organic frameworks for acetylene/ethylene separation[J]. Nature Communications, 2020, 11(1): 6259.
32 Bao Z B, Wang J W, Zhang Z G, et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks[J]. Angewandte Chemie International Edition, 2018, 57(49): 16020-16025.
33 Li L Y, Guo L D, Pu S Y, et al. A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 358: 446-455.
34 Zheng F, Guo L D, Gao B X, et al. Engineering the pore size of pillared-layer coordination polymers enables highly efficient adsorption separation of acetylene from ethylene[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28197-28204.
35 Ke T, Wang Q J, Shen J, et al. Molecular sieving of C2-C3 alkene from alkyne with tuned threshold pressure in robust layered metal-organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(31): 12725-12730.
36 Li L Y, Guo L D, Zheng F, et al. Calcium-based metal-organic framework for simultaneous capture of trace propyne and propadiene from propylene[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 17147-17154.
37 Liao P Q, Huang N Y, Zhang W X, et al. Controlling guest conformation for efficient purification of butadiene[J]. Science, 2017, 356(6343): 1193-1196.
38 Wang S Q, Mukherjee S, Patyk-Kaźmierczak E, et al. Highly selective, high-capacity separation of o-xylene from C8 aromatics by a switching adsorbent layered material[J]. Angewandte Chemie International Edition, 2019, 58(20): 6630-6634.
39 Gonzalez M I, Kapelewski M T, Bloch E D, et al. Separation of xylene isomers through multiple metal site interactions in metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(9): 3412-3422.
40 Li X L, Wang J H, Bai N N, et al. Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes[J]. Nature Communications, 2020, 11(1): 4280.
41 Nugent P, Belmabkhout Y, Burd S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439): 80-84.
42 He Y B, Xiang S C, Chen B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. Journal of the American Chemical Society, 2011, 133(37): 14570-14573
43 McDonald T M, Mason J A, Kong X Q, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks[J]. Nature, 2015, 519(7543): 303-308.
44 Mason J A, Oktawiec J, Taylor M K, et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management[J]. Nature, 2015, 527(7578): 357-361.
45 Kishida K, Watanabe Y, Horike S, et al. DRIFT and theoretical studies of ethylene/ethane separation on flexible and microporous [Cu2(2,3-pyrazinedicarboxylate)2(pyrazine)]n[J]. European Journal of Inorganic Chemistry, 2014,(17): 2747-2752.
46 Chen B L, Liang C D, Yang J, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes[J]. Angewandte Chemie International Edition, 2006, 45(9): 1390-1393.
47 Herm Z R, Wiers B M, Mason J A, et al. Separation of hexane isomers in a metal-organic framework with triangular channels[J]. Science, 2013, 340(6135): 960-964.
48 Dan-Hardi M, Serre C, Frot T, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859.
49 Fu Y H, Sun D R, Chen Y J, et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angewandte Chemie International Edition, 2012, 51(14): 3364-3367.
50 Wang Z Q, Cohen S M. Postsynthetic covalent modification of a neutral metal-organic framework[J]. Journal of the American Chemical Society, 2007, 129(41): 12368-12369.
51 Tanabe K K, Wang Z Q, Cohen S M. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach[J]. Journal of the American Chemical Society, 2008, 130(26): 8508-8517.
52 Yaghi O M, Kalmutzki M J, Diercks C S. Introduction to Reticular Chemistry[M]. Weinheim, Germany: Wiley-VCH, 2019.
53 Bárcia P S, Guimarães D, Mendes P A P, et al. Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66[J]. Microporous and Mesoporous Materials, 2011, 139(1/2/3): 67-73.
54 Mendes P A P, Ragon F, Rodrigues A E, et al. Hexane isomers sorption on a functionalized metal-organic framework[J]. Microporous and Mesoporous Materials, 2013, 170: 251-258.
55 Ferreira A F P, Mittelmeijer-Hazeleger M C, Granato M A, et al. Sieving di-branched from mono-branched and linear alkanes using ZIF-8: experimental proof and theoretical explanation[J]. Physical Chemistry Chemical Physics, 2013, 15(22): 8795-8804.
56 Fang Z L, Zheng S R, Tan J B, et al. Tubular metal-organic framework-based capillary gas chromatography column for separation of alkanes and aromatic positional isomers[J]. Journal of Chromatography A, 2013, 1285: 132-138.
57 Fan L, Yan X P. Evaluation of isostructural metal-organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers[J]. Talanta, 2012, 99: 944-950.
58 Bozbiyik B, Lannoeye J, de Vos D E, et al. Shape selective properties of the Al-fumarate metal-organic framework in the adsorption and separation of n-alkanes, iso-alkanes, cyclo-alkanes and aromatic hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 3294-3301.
59 Wee L H, Meledina M, Turner S, et al. 1D-2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation[J]. Journal of the American Chemical Society, 2017, 139(2): 819-828.
60 Wang Y X, Zhao D. Beyond equilibrium: metal-organic frameworks for molecular sieving and kinetic gas separation[J]. Crystal Growth & Design, 2017, 17(5): 2291-2308.
61 Mendes P A P, Horcajada P, Rives S, et al. A complete separation of hexane isomers by a functionalized flexible metal organic framework[J]. Advanced Functional Materials, 2014, 24(48): 7666-7673.
62 Lv D F, Wang H, Chen Y W, et al. Iron-based metal-organic framework with hydrophobic quadrilateral channels for highly selective separation of hexane isomers[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 6031-6038.
63 Suh B L, Kim J. Reverse shape selectivity of hexane isomer in ligand inserted MOF-74[J]. RSC Advances, 2020, 10(38): 22601-22605.
64 Yu L, Dong X L, Gong Q H, et al. Splitting mono- and dibranched alkane isomers by a robust aluminum-based metal-organic framework material with optimal pore dimensions[J]. Journal of the American Chemical Society, 2020, 142(15): 6925-6929.
65 Wang H, Dong X L, Velasco E, et al. One-of-a-kind: a microporous metal-organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving[J]. Energy & Environmental Science, 2018, 11(5): 1226-1231.
66 Bury W, Walczak A M, Leszczyński M K, et al. Rational design of noncovalent diamondoid microporous materials for low-energy separation of C6-hydrocarbons[J]. Journal of the American Chemical Society, 2018, 140(44): 15031-15037.
67 Cui P F, Lin Y J, Li Z H, et al. Dihydrogen bond interaction induced separation of hexane isomers by self-assembled carborane metallacycles[J]. Journal of the American Chemical Society, 2020, 142(18): 8532-8538.
68 Castro-Gutiérrez J, de Oliveira Jardim E, Canevesi R L S, et al. Molecular sieving of linear and branched C6 alkanes by tannin-derived carbons[J]. Carbon, 2021, 174: 413-422.
69 Ling Y, Chen Z X, Zhai F P, et al. A zinc(Ⅱ) metal-organic framework based on triazole and dicarboxylate ligands for selective adsorption of hexane isomers[J]. Chemical Communications, 2011, 47(25): 7197-7199.
70 Bárcia P S, Zapata F, Silva J A C, et al. Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework[J]. The Journal of Physical Chemistry B, 2007, 111(22): 6101-6103.
71 Mendes P A P, Rodrigues A E, Horcajada P, et al. Separation of hexane isomers on rigid porous metal carboxylate-based metal-organic frameworks[J]. Adsorption Science & Technology, 2014, 32(6): 475-488.
72 Belarbi H, Boudjema L, Shepherd C, et al. Adsorption and separation of hydrocarbons by the metal organic framework MIL-101(Cr)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 46-52.
73 Ramsahye N A, Trens P, Shepherd C, et al. The effect of pore shape on hydrocarbon selectivity on UiO-66(Zr), HKUST-1 and MIL-125(Ti) metal organic frameworks: insights from molecular simulations and chromatography[J]. Microporous and Mesoporous Materials, 2014, 189: 222-231.
[1] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[2] 陈润道, 郑芳, 郭立东, 杨启炜, 张治国, 杨亦文, 任其龙, 鲍宗必. 稀有气体Xe/Kr吸附分离研究进展[J]. 化工学报, 2021, 72(1): 14-26.
[3] 李建惠, 兰天昊, 陈杨, 杨江峰, 李立博, 李晋平. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179.
[4] 马佳欢, 杨微微, 白羽, 孙克宁. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030.
[5] 安珂, 杨冬, 赵展烽, 任汉杰, 陈瑶, 周致远, 姜忠义. 金属有机框架光催化剂微环境调控研究进展[J]. 化工学报, 2019, 70(10): 3776-3790.
[6] 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352.
[7] 盖月庭,顾昊辉,梁战桥,刘中勋,周震寰. 对二乙苯生产技术评述[J]. 化工进展, 2014, 33(03): 538-541.
[8] 郝广平,李文翠,陆安慧. 纳米结构多孔固体在二氧化碳吸附分离中的应用[J]. 化工进展, 2012, 31(11): 2493-2510.
[9] 李云东,易红宏,唐晓龙,李芬容,何 丹. 吸附剂特性对CO2/CH4吸附分离的影响分析[J]. 化工进展, 2012, 31(05): 974-980.
[10] 席芳,林文胜,顾安忠,刘薇,齐研科. 煤层气在活性炭和炭分子筛上变压吸附分离 [J]. CIESC Journal, 2010, 61(S2): 54-57.
[11] 张英, 苏宏业, 褚健. 基于支持向量基的关联规则挖掘及其在模拟移动床PX吸附分离过程中的应用[J]. CIESC Journal, 2005, 13(6): 751-757.
[12] 张雄福,王金渠,王青川. 炭分子筛改性及其对乙烯和氧气的吸附分离性能 [J]. CIESC Journal, 1999, 50(3): 343-350.
[13] 李忠,舒文利,刘唐书,李湘,赵月春. 非平衡循环吸附色谱分离研究 [J]. CIESC Journal, 1998, 49(4): 501-505.
[14] 顾金生,蒋慰孙. 模拟移动床Parex过程建模与仿真 [J]. CIESC Journal, 1996, 47(4): 439-446.
[15] 王娟,褚家瑛. 泡沫塔吸附分离BF_4~- [J]. CIESC Journal, 1994, 45(3): 380-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[2] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[3] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[4] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[5] 沈师孔, 李然家, 周吉萍, 余长春. 晶格氧用于轻烃的选择氧化[J]. CIESC Journal, 2003, 11(6): 649 -655 .
[6] 王宏智, 姚素薇, 张卫国. 电沉积Ni-W梯度镀层及其结构表征[J]. CIESC Journal, 2003, 11(3): 348 -351 .
[7] 刘磊, 孙贺东, 胡志华, 周芳德. 水平管气液两相弹状流液弹频率的水动力学新模型[J]. CIESC Journal, 2003, 11(5): 508 -514 .
[8] 张治山, 赵文, 王艳丽, 周传光, 袁希钢. 基于瞬时目标函数曲线特性的反应器网络综合[J]. CIESC Journal, 2003, 11(4): 436 -440 .
[9] 佟晓冬, 杨征, 董晓燕, 孙彦. 利用膨胀床吸附技术单步纯化分子伴侣—GroEL[J]. CIESC Journal, 2003, 11(4): 460 -463 .
[10] 蔡振云, 卢祖国, 李小波. 用管式反应技术制备乙二醇乙醚乙酸酯[J]. CIESC Journal, 2003, 11(3): 338 -340 .