化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4759-4767.doi: 10.11949/0438-1157.20210026

• 分离工程 • 上一篇    下一篇

MIL-101Cr-F/Cl用于N2O的捕集研究

李媛1,2(),张飞飞1,2,王丽1,2,杨江峰1,2(),李立博1,2,李晋平1,2   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.气体能源高效清洁利用山西省重点实验室,山西 太原 030024
  • 收稿日期:2021-01-08 修回日期:2021-03-01 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 杨江峰 E-mail:1749784761@qq.com;yangjiangfeng@tyut.edu.cn
  • 作者简介:李媛(1994—),女,硕士研究生,1749784761@qq.com
  • 基金资助:
    国家自然科学基金项目(U20B6004)

Study on the capture of N2O by MIL-101Cr-F/Cl

Yuan LI1,2(),Feifei ZHANG1,2,Li WANG1,2,Jiangfeng YANG1,2(),Libo LI1,2,Jinping LI1,2   

  1. 1.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, China
  • Received:2021-01-08 Revised:2021-03-01 Published:2021-09-05 Online:2021-09-05
  • Contact: Jiangfeng YANG E-mail:1749784761@qq.com;yangjiangfeng@tyut.edu.cn

摘要:

氧化亚氮(N2O)是仅次于CO2和CH4的第三大温室气体,对其捕集具有资源回收和减排温室气体的双重价值。本文通过添加氢氟酸和盐酸合成了末端具有不同阴离子的MIL-101Cr材料:MIL-101(Cr)-F和MIL-101(Cr)-Cl,通过XRD、BET、SEM等对样品进行了表征,测试并分析了两种样品对N2O和N2的吸附性能,进行了选择性和吸附热的计算以及混合气体的穿透模拟。研究结果表明,MIL-101(Cr)-Cl拥有目前最高的N2O吸附容量(6.43 mmol/g,298 K)和N2O/N2选择性(267),混合气体(N2O/N2=0.1%/99.9%)穿透模拟结果显示MIL-101(Cr)-Cl具有更加优异的微量N2O捕获能力。

关键词: 氧化亚氮, 氮气, MIL-101Cr, 阴离子, 吸附分离

Abstract:

Nitrous oxide (N2O) is the third largest greenhouse gas after CO2 and CH4, and its capture has the dual value of resource recovery and greenhouse gas emission reduction. In this paper, MIL-101(Cr) with different anion terminals were synthesized by adding hydrofluoric acid and hydrochloric acid separately, named MIL-101(Cr)-F and MIL-101(Cr)-Cl, the synthesized samples were characterized by XRD, BET and SEM, et al. Single component adsorption isotherms of N2O and N2 were tested, and the selectivity of N2O/N2 and corresponding adsorption heat of gases were also calculated. Additionally, the simulation of mixture (N2O/N2=0.1%/99.9%) breakthrough were carried out. As the result, MIL-101(Cr)-Cl with the highest N2O adsorption capacity (6.43 mmol/g, 298 K) and N2O/N2 selectivity (267) were reported. Furthermore, the simulation result confirmed that MIL-101(Cr)-Cl has great potential to capture trace amount of N2O.

Key words: nitrous oxide, nitrogen, MIL-101Cr, anion, adsorption and separation

中图分类号: 

  • TQ 028.1

图1

MIL-101(Cr)的结构(a)和两种不同阴离子(b)的示意图"

图2

MIL-101(Cr)-F/Cl的XRD谱图(a);77 K下的N2吸脱附等温线(b)和孔径分布 (c)"

图3

MIL-101(Cr)-F/Cl的SEM图[(a)、(b)]和MIL-101(Cr)-Cl的EDX元素分布(c)"

图4

MIL-101(Cr)-F/Cl的热失重曲线"

图5

MIL-101(Cr)-F/Cl在423 K、523 K活化下的N2O和N2吸附等温线"

表1

298 K、1 bar下N2O在多孔材料上的吸附容量"

吸附剂N2O吸附量/(mmol/g)温度/K文献
Silicalite-11.75298[23]
Zeolite-5A4.10298[24]
MOF-50.90298[24]
ZIF-72.50298[12]
Ni-MOF2.81298[34]
MIL-100Cr5.78298[35]
ED-MIL-100Cr2.14298[11]
MIL-101Cr-F3.26298本文
MIL-101Cr-Cl6.43298本文

图6

MIL-101(Cr)-F/Cl在298 K下N2O和N2的吸附热"

图7

MIL-101(Cr)-F/Cl对298 K下N2O和N2吸附等温线的拟合"

图8

298 K下N2O和N2的选择性(a)及穿透模拟[(b)、(c)]"

表2

吸附剂及吸附床参数设置"

参数数值
孔隙率0.53
堆积密度/(kg/m3)233
吸附剂半径/m1×10-5
床层空隙率0.2
床层高度/m0.16
床层半径/m4×10-3
传质系数(N2O)0.02
传质系数(N2)0.03
1 Lashof D A, Ahuja D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531.
2 Wuebbles D J. Nitrous oxide: no laughing matter[J]. Science, 2009, 326(5949): 56-57.
3 Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.
4 Xiao D J, Bloch E D, Mason J A, et al. Oxidation of ethane to ethanol by N2 O in a metal-organic framework with coordinatively unsaturated iron(Ⅱ) sites[J]. Nature Chemistry, 2014, 6(7): 590-595.
5 Kay S. Synthetic chemistry with nitrous oxide[J]. Chemical Society Reviews, 2015, 44(17): 6375-6386.
6 Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828): 248-256.
7 Konsolakis M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects[J]. ACS Catalysis, 2015, 5(11): 6397-6421.
8 Hamilton S M, Hopkins W S, Harding D J, et al. Infrared induced reactivity on the surface of isolated size-selected clusters: dissociation of N2O on rhodium clusters[J]. Journal of the American Chemical Society, 2010, 132(5): 1448-1449.
9 Jabłońska M, Palkovits R. It is no laughing matter: nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts[J]. Catalysis Science & Technology, 2016, 6(21): 7671-7687.
10 Jurado A, Borges A V, Brouyère S. Dynamics and emissions of N2O in groundwater: a review[J]. Science of the Total Environment, 2017, 584/585: 207-218.
11 Wang L, Zhang F F, Wang C, et al. Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO2/N2O separation[J]. Separation and Purification Technology, 2020, 235: 116219.
12 Chen D L, Wang N W, Wang F F, et al. Utilizing the gate-opening mechanism in ZIF-7 for adsorption discrimination between N2O and CO2[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17831-17837.
13 赵铎, 陈聚良, 史红军, 等. 一种己二酸尾气中氮氧化物的脱除装置: 206587600U[P]. 2017-10-27.
Zhao D, Chen J L, Shi H J, et al. A device and method for removing nitrogen oxides in adipic acid tail gases: 206587600U[P]. 2017-10-27.
14 Tsai M L, Hadt R G, Vanelderen P, et al. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation[J]. Journal of the American Chemical Society, 2014, 136(9): 3522-3529.
15 Zhang F M, Chen X, Zhuang J, et al. Direct oxidation of benzene to phenol by N2O over meso-Fe-ZSM-5 catalysts obtained via alkaline post-treatment[J]. Catalysis Science & Technology, 2011, 1(7): 1250-1255.
16 Zeng R, Feller M, Diskin-Posner Y, et al. CO oxidation by N2O homogeneously catalyzed by ruthenium hydride pincer complexes indicating a new mechanism[J]. Journal of the American Chemical Society, 2018, 140(23): 7061-7064.
17 Tolman W. Binding and activation of N2O at transition-metal centers: recent mechanistic insights[J]. Angewandte Chemie International Edition, 2010, 49(6): 1018-1024.
18 Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191.
19 Hartmann N J, Wu G, Hayton T W. Synthesis and reactivity of a nickel(Ⅱ) thioperoxide complex: demonstration of sulfide-mediated N2O reduction[J]. Chemical Science, 2018, 9(31): 6580-6588.
20 Perez-Ramirez J, Santiago M. Metal-substituted hexaaluminates for high-temperature N2O abatement[J]. Chemical Communications, 2007, 38(6): 619-621.
21 周丽, 丁剑木. 空分装置中有害气体的危害与控制[J]. 冶金动力, 2020, 39(5): 30-33.
Zhou L, Ding J M. The harms and control of harmful gases in air separation unit[J]. Metallurgical Power, 2020, 39(5): 30-33.
22 Harvey M J, Sperlich P, Clough T J, et al. Global research alliance N2O chamber methodology guidelines: recommendations for air sample collection, storage, and analysis[J]. Journal of Environmental Quality, 2020, 49(5): 1110-1125.
23 Groen J C, Pérez-Ramírez J, Zhu W D. Adsorption of nitrous oxide on silicalite-1[J]. Journal of Chemical & Engineering Data, 2002, 47(3): 587-589.
24 Saha D, Bao Z B, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environmental Science & Technology, 2010, 44(5): 1820-1826.
25 Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446.
26 Lin R B, Xiang S C, Xing H B, et al. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coordination Chemistry Reviews, 2019, 378: 87-103.
27 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477.
28 杨江峰, 欧阳坤, 张倬铭, 等. 脱氧剂Fe-MOF-74的制备及氧气吸附失活规律[J]. 化工学报, 2015, 66(8): 3262-3267.
Yang J F, Ouyang K, Zhang Z M, et al. Preparation and oxygen adsorption of deoxidation agent Fe-MOF-74 and its deactivation[J]. CIESC Journal, 2015, 66(8): 3262-3267.
29 Jiang J, Furukawa H, Zhang Y B, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society, 2016, 138(32): 10244-10251.
30 张倬铭, 杨江峰, 陈杨, 等. 一维直孔道MOFs对CH4/N2和CO2/CH4的分离[J]. 化工学报, 2015, 66(9): 3549-3555.
Zhang Z M, Yang J F, Chen Y, et al. Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J]. CIESC Journal, 2015, 66(9): 3549-3555.
31 Yang J F, Wang Y, Li L B, et al. Protection of open-metal V(Ⅲ) sites and their associated CO2/CH4/N2/O2/H2O adsorption properties in mesoporous V-MOFs[J]. Journal of Colloid and Interface Science, 2015, 456: 197-205.
32 Kloutse F A, Gauthier W, Hourri A, et al. Study of competitive adsorption of the N2O-CO2-CH4-N2 quaternary mixture on CuBTC[J]. Separation and Purification Technology, 2020, 235: 116211.
33 Saha D, Deng S G. Adsorption equilibrium, kinetics, and enthalpy of N2O on zeolite 4A and 13X[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3312-3317.
34 Zhang X P, Chen W J, Shi W, et al. Highly selective sorption of CO2 and N2O and strong gas-framework interactions in a nickel(ⅱ) organic material[J]. Journal of Materials Chemistry A, 2016, 4(41): 16198-16204.
35 Yang J F, Du B J, Liu J Q, et al. MIL-100Cr with open Cr sites for a record N2O capture[J]. Chemical Communications, 2018, 54(100): 14061-14064.
36 Hamon L, Serre C, Devic T, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature[J]. Journal of the American Chemical Society, 2009, 131(25): 8775-8777.
37 Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042.
38 Malouche A, Blanita G, Dan L P, et al. Hydrogen absorption in 1 nm Pd clusters confined in MIL-101(Cr)[J]. Journal of Materials Chemistry A, 2017, 5(44): 23043-23052.
39 Myers A L, Prausnitz J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11(1): 121-127.
40 Kumar K V, Gadipelli S, Wood B, et al. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials[J]. Journal of Materials Chemistry A, 2019, 7(17): 10104-10137.
41 Yang J F, Bai H H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal, 2020, 388: 124222.
42 Xu M, Deng S G. Efficient screening of novel adsorbents for coalbed methane recovery[J]. Journal of Colloid and Interface Science, 2020, 565: 131-141.
43 Berdonosova E A, Kovalenko K A, Polyakova E V, et al. Influence of anion composition on gas sorption features of Cr-MIL-101 metal-organic framework[J]. The Journal of Physical Chemistry C, 2015, 119(23): 13098-13104.
44 Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539(7627): 76-80.
45 Yoon J W, Chang H, Lee S J, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531.
46 尚华, 白洪灏, 刘佳奇, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098.
Shang H, Bai H H, Liu J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1[J]. CIESC Journal, 2020, 71(5): 2088-2098.
[1] 韩昌亮, 辛镜青, 于广滨, 刘俊秀, 许麒澳, 姚安卡, 尹鹏. 微通道内超临界氮气三维热流场实验与数值模拟[J]. 化工学报, 2022, 73(2): 653-662.
[2] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[3] 戴琼斌, 刘宏斌, 夏启斌, 周欣, 李忠. 一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能[J]. 化工学报, 2021, 72(8): 4196-4203.
[4] 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465.
[5] 刘璇, 马溢昌, 张秋根, 刘庆林. 富勒烯交联季铵化聚苯醚阴离子交换膜的制备[J]. 化工学报, 2021, 72(7): 3849-3855.
[6] 巩有奎, 李美玲, 孙洪伟. 不同NO3-浓度An/A/O-SBR系统PAOs-GAOs竞争及N2O释放特性[J]. 化工学报, 2021, 72(3): 1675-1683.
[7] 刘元伟, 董晨初, 廖俊斌, 王超, 陈权, 沈江南. 不同侧链BPPO阴离子交换膜的制备及其抗污染性能[J]. 化工学报, 2021, 72(3): 1732-1741.
[8] 李建惠, 兰天昊, 陈杨, 杨江峰, 李立博, 李晋平. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179.
[9] 陈润道, 郑芳, 郭立东, 杨启炜, 张治国, 杨亦文, 任其龙, 鲍宗必. 稀有气体Xe/Kr吸附分离研究进展[J]. 化工学报, 2021, 72(1): 14-26.
[10] 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491.
[11] 尚华, 白洪灏, 刘佳奇, 杨江峰, 李晋平. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098.
[12] 罗振敏, 杨勇, 程方明, 王涛, 常助川, 苏彬, 张蔓. N2和CO2惰化丙烯爆炸极限参数实验研究[J]. 化工学报, 2020, 71(4): 1922-1928.
[13] 曲冬蕾,杨颖,钱智玲,李平,于建国. CH4/CO2混合气置换强化含氮低品质甲烷的浓缩[J]. 化工学报, 2020, 71(12): 5599-5609.
[14] 常苗, 刘磊, 阳庆元, 刘大欢, 仲崇立. 水热稳定金属-有机骨架材料用于高效分离SF6/N2混合物的研究[J]. 化工学报, 2020, 71(1): 320-328.
[15] 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!