化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3776-3790.DOI: 10.11949/0438-1157.20190601
安珂1,2(),杨冬3,4,赵展烽1,2,任汉杰1,2,陈瑶1,2,周致远3,姜忠义1,2()
收稿日期:
2019-05-31
修回日期:
2019-08-11
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
姜忠义
作者简介:
安珂(1996—),男,硕士研究生,基金资助:
Ke AN1,2(),Dong YANG3,4,Zhanfeng ZHAO1,2,Hanjie REN1,2,Yao CHEN1,2,Zhiyuan ZHOU3,Zhongyi JIANG1,2()
Received:
2019-05-31
Revised:
2019-08-11
Online:
2019-10-05
Published:
2019-10-05
Contact:
Zhongyi JIANG
摘要:
金属有机框架材料(MOFs)是一类无机金属中心和有机配体自组装形成的晶体多孔材料,既有无机材料高结晶度、高电子迁移率等特点,又兼具有机材料高比表面积、高孔隙率、强可修饰性等特点,在光催化领域显示出广阔的应用前景。围绕物理化学微环境调控,对近年来MOFs光催化材料的研究进行了详细综述。其中,物理微环境的调控重点介绍了微观形貌调控、贵金属沉积和异质结构建三个方面;化学微环境调控重点介绍了金属位点调控与有机配体调控两个方面。此外,对MOFs光催化材料的未来发展进行展望,以期为高性能MOFs光催化剂的理性设计和可控制备等方面的研究提供思路。
中图分类号:
安珂, 杨冬, 赵展烽, 任汉杰, 陈瑶, 周致远, 姜忠义. 金属有机框架光催化剂微环境调控研究进展[J]. 化工学报, 2019, 70(10): 3776-3790.
Ke AN, Dong YANG, Zhanfeng ZHAO, Hanjie REN, Yao CHEN, Zhiyuan ZHOU, Zhongyi JIANG. Research progress on microenvironment regulation of metal-organic framework photocatalyst[J]. CIESC Journal, 2019, 70(10): 3776-3790.
催化剂种类 | 物理微环境调控 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|
NH2-MIL-125 | 沉积Pt | CO2还原 | 587.5 μmol?h–1?g–1 | Sun等[ |
UiO-66 | 沉积Au@Pd | 产氢 | 42000 ml?h–1?g–1 | Wen等[ |
Co-ZIF-9 | 沉积Ag | CO2还原 | 56800 μmol?h–1?g–1 | Chen等[ |
MIL-125 | 沉积Pt和Au | 产氢 | 1743.0 μmol?h–1?g–1 | Xiao等[ |
UiO-66 | 复合g-C3N4 | 产氢 | 比物理混合性能高17倍 | Wang等[ |
MIL-53 | 复合 g-C3N4 | Cr(Ⅵ)还原 | 比MIL-53性能高2.0倍 | Huang等[ |
ZIF-8 | 复合 g-C3N4 | CO2还原 | 0.75 μmol?h–1?g–1 | Liu等[ |
NH2-UiO-66 | 复合TpPa-1-COF | 产氢 | 23.41 μmol?h–1?g–1 | Zhang等[ |
NH2-MIL-125或NH2-UiO-66 | 复合B-CTF-1 | 产氢 | 360 μmol?h–1?g–1 | Li等[ |
NH2-MIL-68 | 复合TPA-COF | 降解罗丹明B | 降解率100%(40 min) | Peng等[ |
NH2-MIL-125 | 复合LZU1 | 苯乙烯加氢 | 转化率100%(15 min) | Sun等[ |
NH2-MIL-125 | 复合TTB-TTA | 降解甲基橙 | 降解率100%(20 min) | He等[ |
Ru-MOF | 形貌调控 | CO2还原 | 77.2 μmol?h–1?g–1 | Zhang等[ |
Cd-TBAPy | 形貌调控 | 全解水 | 产氧速率1634 μmol?h–1?g–1 | Xiao等[ |
Ni-MOF | 形貌调控 | 产氢 | 45201 μmol?h–1?g–1 | Qiao等[ |
ZIF-67 | 形貌调控 | CO2还原 | 3890 μmol?h–1?g–1 | Wang等[ |
Ni-MOF | 缺陷构造 | CO2还原 | 16000 μmol?h–1?g–1 | Niu等[ |
NH2-MIL-125 | 孔道封装Co(Ⅱ) | 产氢 | 比NH2-MIL-125高32倍 | Jiang等[ |
表1 MOFs物理微环境调控及其性能比较
Table 1 Physical microenvironment regulation and performance comparison of MOFs
催化剂种类 | 物理微环境调控 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|
NH2-MIL-125 | 沉积Pt | CO2还原 | 587.5 μmol?h–1?g–1 | Sun等[ |
UiO-66 | 沉积Au@Pd | 产氢 | 42000 ml?h–1?g–1 | Wen等[ |
Co-ZIF-9 | 沉积Ag | CO2还原 | 56800 μmol?h–1?g–1 | Chen等[ |
MIL-125 | 沉积Pt和Au | 产氢 | 1743.0 μmol?h–1?g–1 | Xiao等[ |
UiO-66 | 复合g-C3N4 | 产氢 | 比物理混合性能高17倍 | Wang等[ |
MIL-53 | 复合 g-C3N4 | Cr(Ⅵ)还原 | 比MIL-53性能高2.0倍 | Huang等[ |
ZIF-8 | 复合 g-C3N4 | CO2还原 | 0.75 μmol?h–1?g–1 | Liu等[ |
NH2-UiO-66 | 复合TpPa-1-COF | 产氢 | 23.41 μmol?h–1?g–1 | Zhang等[ |
NH2-MIL-125或NH2-UiO-66 | 复合B-CTF-1 | 产氢 | 360 μmol?h–1?g–1 | Li等[ |
NH2-MIL-68 | 复合TPA-COF | 降解罗丹明B | 降解率100%(40 min) | Peng等[ |
NH2-MIL-125 | 复合LZU1 | 苯乙烯加氢 | 转化率100%(15 min) | Sun等[ |
NH2-MIL-125 | 复合TTB-TTA | 降解甲基橙 | 降解率100%(20 min) | He等[ |
Ru-MOF | 形貌调控 | CO2还原 | 77.2 μmol?h–1?g–1 | Zhang等[ |
Cd-TBAPy | 形貌调控 | 全解水 | 产氧速率1634 μmol?h–1?g–1 | Xiao等[ |
Ni-MOF | 形貌调控 | 产氢 | 45201 μmol?h–1?g–1 | Qiao等[ |
ZIF-67 | 形貌调控 | CO2还原 | 3890 μmol?h–1?g–1 | Wang等[ |
Ni-MOF | 缺陷构造 | CO2还原 | 16000 μmol?h–1?g–1 | Niu等[ |
NH2-MIL-125 | 孔道封装Co(Ⅱ) | 产氢 | 比NH2-MIL-125高32倍 | Jiang等[ |
图4 Au@Pd/UiO-66光催化甲酸分解制氢反应机理示意图[49]
Fig.4 Schematic illustration of reaction mechanism for H2 production from formic acid by Au@Pd/UiO-66 catalyst[49]
图5 Ⅱ型异质结和Z型异质结光生载流子的产生与运输示意图
Fig.5 Schematic illustration of generation and transportation of photo-generated carriers in type Ⅱ heterojunction and Z-type heterojunction
图9 Cd-TBAPy上可见光驱动光催化产氢产氧机理示意图[61]
Fig.9 Schematic illustration of mechanism for visible-light-driven photocatalytic H2 and O2 evolution over Cd-TBAPy [61]
催化剂种类 | 化学微环境调控 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|
MIL100、MOF-74 | Sc、Zn、Mg与Ti离子交换 | 降解亚甲基蓝 | 降解率>98%(3 min) | Zou等[ |
NH2-UiO-66 | Ti、Zr离子交换 | CO2还原 | 最高转换数为6.50 | Lee等[ |
NH2-UiO-66 | Ti、Zr离子交换 | 产氢 | 389 μmol?h-1?mol-1 | Sun等[ |
NH2-UiO-66 | Ti、Zr离子交换 | 还原Se(Ⅵ) | 还原率100% | Tu等[ |
M(tpbpc)0.5(bdc)0.5·H2O | Co、Zn离子交换 | 降解甲基橙 | 降解率100%(1.5 h) | Liu等[ |
Pd/MlL-101 | Ce、Cr离子交换 | 产氢 | 495 μmol?h-1?g-1 | Wen等[ |
UiO-66 | Zr、Ga离子交换 | CO2还原 | 9.06 μmol?h-1 | Lee等[ |
UiO-68 | 配体H2mtpdc引入H2etpdc | CDC反应 | 产率93% | Li等[ |
Zn-PYIs | 配体BCIP转换PYIs | 醛α-烷基化 | 转化率74% | Wu等[ |
NH2-MIL-125 | 配体ATA中引入氨基 | CO2还原 | 16.28 μmol?h-1?g-1 | Fu等[ |
NH2-UiO-66 | 配体ATA中混合DTA | CO2还原 | 41.4 μmol?h-1?g-1 | Sun等[ |
UiO-67 | 配体H2bpdc引入Mn(bpy)(CO)3Br | CO2还原 | 量子产率13.8% | Fei等[ |
表2 MOFs化学微环境调控及其性能比较
Table 2 Chemical microenvironment regulation and performance comparison of MOFs
催化剂种类 | 化学微环境调控 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|
MIL100、MOF-74 | Sc、Zn、Mg与Ti离子交换 | 降解亚甲基蓝 | 降解率>98%(3 min) | Zou等[ |
NH2-UiO-66 | Ti、Zr离子交换 | CO2还原 | 最高转换数为6.50 | Lee等[ |
NH2-UiO-66 | Ti、Zr离子交换 | 产氢 | 389 μmol?h-1?mol-1 | Sun等[ |
NH2-UiO-66 | Ti、Zr离子交换 | 还原Se(Ⅵ) | 还原率100% | Tu等[ |
M(tpbpc)0.5(bdc)0.5·H2O | Co、Zn离子交换 | 降解甲基橙 | 降解率100%(1.5 h) | Liu等[ |
Pd/MlL-101 | Ce、Cr离子交换 | 产氢 | 495 μmol?h-1?g-1 | Wen等[ |
UiO-66 | Zr、Ga离子交换 | CO2还原 | 9.06 μmol?h-1 | Lee等[ |
UiO-68 | 配体H2mtpdc引入H2etpdc | CDC反应 | 产率93% | Li等[ |
Zn-PYIs | 配体BCIP转换PYIs | 醛α-烷基化 | 转化率74% | Wu等[ |
NH2-MIL-125 | 配体ATA中引入氨基 | CO2还原 | 16.28 μmol?h-1?g-1 | Fu等[ |
NH2-UiO-66 | 配体ATA中混合DTA | CO2还原 | 41.4 μmol?h-1?g-1 | Sun等[ |
UiO-67 | 配体H2bpdc引入Mn(bpy)(CO)3Br | CO2还原 | 量子产率13.8% | Fei等[ |
1 | Grätzel M . Mesoscopic solar cells for electricity and hydrogen production from sunlight[J]. Chemistry Letters, 2004, 34(1): 8-13. |
2 | Ravelli D , Dondi D , Fagnoni M , et al . Photocatalysis. A multi-faceted concept for green chemistry[J]. Chemical Society Reviews, 2009, 38(7): 1999-2011. |
3 | Fujishima A , Honda K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
4 | Yaghi O M , Li G , Li H . Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
5 | Li J R , Kuppler R J , Zhou H C . Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
6 | Wang T , Li X , Dai W , et al . Enhanced adsorption of dibenzothiophene with zinc/copper-based metal-organic frameworks[J]. Journal of Materials Chemistry A, 2015, 3(42): 21044-21050. |
7 | 张所瀛, 刘红, 刘朋飞, 等 . 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(5): 1563-1570. |
Zhang S Y , Liu H , Liu P F , et al . Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. CIESC Journal, 2014, 65(5):1563-1570. | |
8 | Adil K , Belmabkhout Y , Pillai R S , et al . Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chemical Society Reviews, 2017, 46(11): 3402-3430. |
9 | Han L , Yu X Y , Lou X W . Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution[J]. Advanced Materials, 2016, 28(23): 4601-4605. |
10 | Palaniselvam T , Kashyap V , Bhange S N , et al . Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells[J]. Advanced Functional Materials, 2016, 26(13): 2150-2162. |
11 | Farrusseng D , Aguado S , Pinel C . Metal-organic frameworks: opportunities for catalysis[J]. Angewandte Chemie International Edition, 2009, 48(41): 7502-7513. |
12 | Yin Z , Wang Q X , Zeng M H . Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework[J]. Journal of the American Chemical Society, 2012, 134(10): 4857-4863. |
13 | Lustig W P , Mukherjee S , Rudd N D , et al . Metal-organic frameworks: functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46(11): 3242-3285. |
14 | Yao R X , Xu X , Zhang X M . Magnetic modulation and cation-exchange in a series of isostructural (4, 8)-connected metal-organic frameworks with butterfly-like [M4(OH)2(RCO2)8] building units[J]. Chemistry of Materials, 2012, 24(2): 303-310. |
15 | Grancha T , Ferrando-Soria J , Zhou H C , et al . Postsynthetic improvement of the physical properties in a metal-organic framework through a single crystal to single crystal transmetallation[J]. Angewandte Chemie International Edition, 2015, 54(22): 6521-6525. |
16 | He Y , Zhou W , Qian G , et al . Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5657-5678. |
17 | Evans J D , Jelfs K E , Day G M , et al . Application of computational methods to the design and characterisation of porous molecular materials[J]. Chemical Society Reviews, 2017, 46(11): 3286-3301. |
18 | Alvaro M , Carbonell E , Ferrer B , et al . Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry-A European Journal, 2007, 13(18): 5106-5112. |
19 | Silva C G , Corma A , García H . Metal-organic frameworks as semiconductors[J]. Journal of Materials Chemistry, 2010, 20(16): 3141-3156. |
20 | Du J J , Yuan Y P , Sun J X , et al . New photocataslysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 945-951. |
21 | Gomes S C , Luz I , Llabrési X F X , et al . Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemistry-A European Journal, 2010, 16(36): 11133-11138. |
22 | Li R , Zhang W , Zhou K . Metal-organic-framework-based catalysts for photoreduction of CO2 [J]. Advanced Materials, 2018, 30(35): 1705512. |
23 | Assi H , Mouchaham G , Steunou N , et al . Titanium coordination compounds: from discrete metal complexes to metal-organic frameworks[J]. Chemical Society Reviews, 2017, 46(11): 3431-3452. |
24 | Bai Y , Dou Y , Xie L H , et al . Zr-based metal-organic frameworks: design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. |
25 | Wang D , Li Z . Iron-based metal-organic frameworks (MOFs) for visible-light-induced photocatalysis[J]. Research on Chemical Intermediates, 2017, 43(9): 5169-5186. |
26 | Meyer K , Ranocchiari M , Bokhoven J A V . Metal organic frameworks for photo-catalytic water splitting[J]. Energy & Environmental Science, 2015, 8(7):1923-1937. |
27 | Chen Y , Wang D , Deng X , et al . Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction[J]. Catalysis Science & Technology, 2017, 7(21): 4893-4904. |
28 | Wang C C , Li J R , Lü X L , et al . Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014, 7(9):2831-2867. |
29 | Deng X , Li Z , García H . Visible light induced organic transformations using metal‐organic‐frameworks (MOFs)[J]. Chemistry-A European Journal, 2017, 23(47): 11189-11209. |
30 | Wang D , Pan Y , Xu L , et al . PdAu@ MIL-100 (Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient n-alkyl amines syntheses under visible light[J]. Journal of Catalysis, 2018, 361: 248-254. |
31 | Wang D , Albero J , García H , et al . Visible-light-induced tandem reaction of o-aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: influence of the structure elucidated by transient absorption spectroscopy[J]. Journal of Catalysis, 2017, 349: 156-162. |
32 | Sun D , Li Z . Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2-Uio-66 (Zr) for efficient visible-light-promoted suzuki coupling reaction[J]. The Journal of Physical Chemistry C, 2016, 120(35): 19744-19750. |
33 | Wang D , Wang M , Li Z . Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J]. ACS Catalysis, 2015, 5(11): 6852-6857. |
34 | Zeng L , Guo X , He C , et al . Metal-organic frameworks: versatile materials for heterogeneous photocatalysis[J]. ACS Catalysis, 2016, 6(11): 7935-7947. |
35 | 刘芳, 樊丰涛, 吕玉翠, 等 . 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5): 1635-1643. |
Liu F , Fan F T , Lyu Y C , et al . Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5): 1635-1643. | |
36 | Deng X , Hao M , Li Z . Engineering metal-organic frameworks (MOFs) for efficient photocatalysis[J]. Current Organic Chemistry, 2018, 22(18): 1825-1835. |
37 | Li Y , Xu H , Ouyang S , et al . Metal-organic frameworks for photocatalysis[J]. Physical Chemistry Chemical Physics, 2016, 18(11): 7563-7572. |
38 | Zhang T , Jin Y , Shi Y , et al . Modulating photoelectronic performance of metal-organic frameworks for premium photocatalysis[J]. Coordination Chemistry Reviews, 2019, 380: 201-229. |
39 | Wen M , Mori K , Kuwahara Y , et al . Design of single-site photocatalysts by using metal-organic frameworks as a matrix[J]. Chemistry-An Asian Journal, 2018, 13(14): 1767-1779. |
40 | Subudhi S , Rath D , Parida K M . A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review[J]. Catalysis Science & Technology, 2018, 8(3): 679-696. |
41 | Dhakshinamoorthy A , Li Z , Garcia H . Catalysis and photocatalysis by metal organic frameworks[J]. Chemical Society Reviews, 2018, 47(22): 8134-8172. |
42 | Nguyen H L . The chemistry of titanium-based metal-organic frameworks[J]. New Journal of Chemistry, 2017, 41(23): 14030-14043. |
43 | Tu T N , Nguyen M V , Nguyen H L , et al . Designing bipyridine-functionalized zirconium metal-organic frameworks as a platform for clean energy and other emerging applications[J]. Coordination Chemistry Reviews, 2018, 364: 33-50. |
44 | Sun D , Li Z . Robust Ti- and Zr-based metal-organic frameworks for photocatalysis[J]. Chinese Journal of Chemistry, 2017, 35(2): 135-147. |
45 | Wen M , Mori K , Kuwahara Y , et al . Design and architecture of metal organic frameworks for visible light enhanced hydrogen production[J]. Applied Catalysis B: Environmental, 2017, 218: 555-569. |
46 | Cui Y , Zhang J , He H , et al . Photonic functional metal-organic frameworks[J]. Chemical Society Reviews, 2018, 47(15): 5740-5785. |
47 | 孙登荣, 李朝晖 . 金属有机框架材料 (MOFs) 在光催化有机合成中的应用[J]. 中国材料进展, 2017, 36(10): 756-764. |
Sun D R , Li Z H . Metal-organic frameworks (MOFs) in photocatalytic organic transformations[J]. Materials China, 2017, 36(10): 756-764. | |
48 | Sun D , Liu W , Fu Y , et al . Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti)(M= Pt and Au)[J]. Chemistry-A European Journal, 2014, 20(16): 4780-4788. |
49 | Wen M , Mori K , Kuwahara Y , et al . Plasmonic Au@ Pd nanoparticles supported on a basic metal-organic framework: synergic boosting of H2 production from formic acid[J]. ACS Energy Letters, 2016, 2(1): 1-7. |
50 | Chen M , Han L , Zhou J , et al . Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-ZIF-9[J]. Nanotechnology, 2018, 29(28): 284003. |
51 | Xiao J D , Han L , Luo J , et al . Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(4): 1103-1107. |
52 | Wang R , Gu L , Zhou J , et al . Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Advanced Materials Interfaces, 2015, 2(10): 1500037. |
53 | Huang J , Zhang X , Song H , et al . Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation[J]. Applied Surface Science, 2018, 441: 85-98. |
54 | Liu S , Chen F , Li S , et al . Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters[J]. Applied Catalysis B: Environmental, 2017, 211: 1-10. |
55 | Zhang F M , Sheng J L , Yang Z D , et al . Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors[J]. Angewandte Chemie, 2018, 130(37): 12282-12286. |
56 | Li F , Wang D , Xing Q J , et al . Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance[J]. Applied Catalysis B: Environmental, 2019, 243: 621-628. |
57 | Peng Y , Zhao M , Chen B , et al . Hybridization of MOFs and COFs: a new strategy for construction of MOF@ COF core-shell hybrid materials[J]. Advanced Materials, 2018, 30(3): 1705454. |
58 | Sun D , Jang S , Yim S J , et al . Metal doped core-shell metal-organic frameworks@ covalent organic frameworks (MOFs@ COFs) hybrids as a novel photocatalytic platform[J]. Advanced Functional Materials, 2018, 28(13): 1707110. |
59 | He S , Rong Q , Niu H , et al . Platform for molecular-material dual regulation: a direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2019, 247: 49-56. |
60 | Zhang S , Li L , Zhao S , et al . Hierarchical metal-organic framework nanoflowers for effective CO2 transformation driven by visible light[J]. Journal of Materials Chemistry A, 2015, 3(30): 15764-15768. |
61 | Xiao Y , Qi Y , Wang X , et al . Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation[J]. Advanced Materials, 2018, 30(44): 1803401. |
62 | Ran J , Qu J , Zhang H , et al . 2D metal organic framework nanosheet: a universal platform promoting highly efficient visible-light-induced hydrogen production[J]. Advanced Energy Materials, 2019, 9(11): 1803402. |
63 | Wang M , Liu J , Guo C , et al . Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect[J]. Journal of Materials Chemistry A, 2018, 6(11): 4768-4775. |
64 | Niu K , Xu Y , Wang H , et al . A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production[J]. Science Advances, 2017, 3(7): e1700921. |
65 | Li Z , Xiao J D , Jiang H L . Encapsulating a Co (Ⅱ) molecular photocatalyst in metal-organic framework for visible-light-driven H2 production: boosting catalytic efficiency via spatial charge separation[J]. ACS Catalysis, 2016, 6(8): 5359-5365. |
66 | Chen L , Chen H , Li Y . One-pot synthesis of Pd@ MOF composites without the addition of stabilizing agents[J]. Chemical Communications, 2014, 50(94): 14752-14755. |
67 | Lajevardi A , Yaraki M T , Masjedi A , et al . Green synthesis of MOF@ Ag nanocomposites for catalytic reduction of methylene blue[J]. Journal of Molecular Liquids, 2019, 276: 371-378. |
68 | Abdelhameed R M , Simões M M Q , Silva A M S , et al . Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrⅢ and Ag nanoparticles[J]. Chemistry-A European Journal, 2015, 21(31): 11072-11081. |
69 | Feng S , Wang R , Feng S , et al . Synthesis of Zr-based MOF nanocomposites for efficient visible-light photocatalytic degradation of contaminants[J]. Research on Chemical Intermediates, 2019, 45(3): 1263-1279. |
70 | Yang Z , Xu X , Liang X , et al . Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions[J]. Applied Catalysis B: Environmental, 2017, 205: 42-54. |
71 | Bai S , Ge J , Wang L , et al . A unique semiconductor-metal-graphene stack design to harness charge flow for photocatalysis[J]. Advanced Materials, 2014, 26(32): 5689-5695. |
72 | Kudo A , Miseki Y . Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278. |
73 | Wang H , Zhang L , Chen Z , et al . Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244. |
74 | Tong Z , Yang D , Li Z , et al . Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis[J]. ACS Nano, 2017, 11(1): 1103-1112. |
75 | Tong Z , Yang D , Sun Y , et al . Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer[J]. Small, 2016, 12(30): 4093-4101. |
76 | Shi L , Wang T , Zhang H , et al . Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2015, 25(33): 5360-5367. |
77 | Zhang X , Yang Y , Huang W , et al . G-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation[J]. Materials Research Bulletin, 2018, 99: 349-358. |
78 | Huang W , Liu N , Zhang X , et al . Metal organic framework g-C3N4/MIL-53 (Fe) heterojunctions with enhanced photocatalytic activity for Cr (Ⅵ) reduction under visible light[J]. Applied Surface Science, 2017, 425: 107-116. |
79 | Bai C , Bi J , Wu J , et al . Fabrication of noble-metal-free g-C3N4-MIL53 (Fe) composite for enhanced photocatalytic H2-generation performance[J]. Applied Organometallic Chemistry, 2018, 32(12): e4597. |
80 | Guo D , Wen R , Liu M , et al . Facile fabrication of g-C3N4/MIL-53 (Al) composite with enhanced photocatalytic activities under visible-light irradiation[J]. Applied Organometallic Chemistry, 2015, 29(10): 690-697. |
81 | Hong J , Chen C , Bedoya F E , et al . Carbon nitride nanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities[J]. Catalysis Science & Technology, 2016, 6(13): 5042-5051. |
82 | Du X , Yi X , Wang P , et al . Enhanced photocatalytic Cr (Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100 (Fe)/g-C3N4 heterojunctions[J]. Chinese Journal of Catalysis, 2019, 40(1): 70-79. |
83 | Tian L , Yang X , Liu Q , et al . Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018, 455: 403-409. |
84 | Panneri S , Thomas M , Ganguly P , et al . C3N4 anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water[J]. Catalysis Science & Technology, 2017, 7(10): 2118-2128. |
85 | Zou L , Feng D , Liu T F , et al . A versatile synthetic route for the preparation of titanium metal-organic frameworks[J]. Chemical Science, 2016, 7(2): 1063-1069. |
86 | Lee Y , Kim S , Kang J K , et al . Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation[J]. Chemical Communications, 2015, 51(26): 5735-5738. |
87 | Sun D , Liu W , Qiu M , et al . Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs)[J]. Chemical Communications, 2015, 51(11): 2056-2059. |
88 | Tu J , Zeng X , Xu F , et al . Microwave-induced fast incorporation of titanium into UiO-66 metal-organic frameworks for enhanced photocatalytic properties[J]. Chemical Communications, 2017, 53(23): 3361-3364. |
89 | Liu J , Xiao J , Wang D , et al . Construction and photocatalytic activities of a series of isostructural Co2+/Zn2+ metal-doped metal-organic frameworks[J]. Crystal Growth & Design, 2017, 17(3): 1096-1102. |
90 | Wen M , Kuwahara Y , Mori K , et al . Synthesis of Ce ions doped metal-organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(27): 14134-14141. |
91 | Lee Y , Kim S , Fei H , et al . Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal-organic framework[J]. Chemical Communications, 2015, 51(92): 16549-16552. |
92 | Li Q Y , Ma Z , Zhang W Q , et al . AIE-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis[J]. Chemical Communications, 2016, 52(75): 11284-11287. |
93 | Wu P , He C , Wang J , et al . Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes[J]. Journal of the American Chemical Society, 2012, 134(36): 14991-14999. |
94 | Fu Y , Sun D , Chen Y , et al . An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J]. Angewandte Chemie International Edition, 2012, 51(14): 3364-3367. |
95 | Sun D , Fu Y , Liu W , et al . Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks[J]. Chemistry-A European Journal, 2013, 19(42): 14279-14285. |
96 | Fei H , Sampson M D , Lee Y , et al . Photocatalytic CO2 reduction to formate using a Mn (I) molecular catalyst in a robust metal-organic framework[J]. Inorganic Chemistry, 2015, 54(14): 6821-6828. |
97 | Wang D , Huang R , Liu W , et al . Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catalysis, 2014, 4(12): 4254-4260. |
98 | Bhattacharjee S , Lee Y R , Puthiaraj P , et al . Metal-organic frameworks for catalysis[J]. Catalysis Surveys from Asia, 2015, 19(4): 203-222. |
99 | Lei Z , Xue Y , Chen W , et al . MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion[J]. Advanced Energy Materials, 2018, 8(32): 1801587. |
100 | Zhang S , Han L , Li L , et al . A highly symmetric metal-organic framework based on a propeller-like Ru-organic metalloligand for photocatalysis and explosives detection[J]. Crystal Growth & Design, 2013, 13(12): 5466-5472. |
101 | Kim D , Whang D R , Park S Y . Self-healing of molecular catalyst and photosensitizer on metal-organic framework: robust molecular system for photocatalytic H2 evolution from water[J]. Journal of the American Chemical Society, 2016, 138(28): 8698-8701. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[14] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 495
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 851
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||